
Organisation User definitions Packaging

Advanced LATEX course; first session

TEXniCie
Jan Jitse Venselaar

February 6th, 2007

1 / 20

Organisation User definitions Packaging

Welcome to the Advanced LATEX course!

Nine sessions, every tuesday between 17:00 and 19:00.

2 / 20

Organisation User definitions Packaging

Course overview

1 Commands & environments

2 Counters & lengths

3 Error messages

4 Test

5 Bibtex

6 Moving stuff

7 Pagestyles

8 To be decided

9 Final test

3 / 20

Organisation User definitions Packaging

What are we going to do?

4 / 20

Organisation User definitions Packaging

New commands

New commands may be defined or redefined under LATEXwith the
commands

\newcommand{\\〈name〉}[narg][opt]{def}

\renewcommand{\〈name〉}[narg][opt]{def}

The first version is used to define a command that does not yet
exist, the second version is used to redefine a command that
already exists. A command name may be any combination of
letters.

5 / 20

Organisation User definitions Packaging

Example: command without arguments

The structure x1, . . . , xn often occurs in mathematical formulas.
and is formed in math mode with x 1,\ldots,x n.

\newcommand{\\xvec}{x 1,\ldots,x n}

This definition of \xvec contains a math command (the
underscore). It may only be called within math mode. So:

\newcommand{\\xvec}{$x 1,\ldots,x n$}

But now \xvec may only be called in text mode, and never in
math mode! A trick to solve this is:

\newcommand{\\xvec}{\ensuremath{x 1,\ldots,x n}}

6 / 20

Organisation User definitions Packaging

Example: command without arguments

The structure x1, . . . , xn often occurs in mathematical formulas.
and is formed in math mode with x 1,\ldots,x n.

\newcommand{\\xvec}{x 1,\ldots,x n}

This definition of \xvec contains a math command (the
underscore). It may only be called within math mode. So:

\newcommand{\\xvec}{$x 1,\ldots,x n$}

But now \xvec may only be called in text mode, and never in
math mode! A trick to solve this is:

\newcommand{\\xvec}{\ensuremath{x 1,\ldots,x n}}

6 / 20

Organisation User definitions Packaging

Example: command without arguments

The structure x1, . . . , xn often occurs in mathematical formulas.
and is formed in math mode with x 1,\ldots,x n.

\newcommand{\\xvec}{x 1,\ldots,x n}

This definition of \xvec contains a math command (the
underscore). It may only be called within math mode. So:

\newcommand{\\xvec}{$x 1,\ldots,x n$}

But now \xvec may only be called in text mode, and never in
math mode! A trick to solve this is:

\newcommand{\\xvec}{\ensuremath{x 1,\ldots,x n}}

6 / 20

Organisation User definitions Packaging

Example: command with arguments

We may want to write a2, . . . , a7 instead of x1, . . . , xn sometimes.
So let us make things variable.

\newcommand{\\subvec}[3]{\ensuremath{#1 #2,\ldots,#1 #3}}}

Now \subvec{a}{i}{j} produces ai , . . . , aj . However,
\subvec{A}{ij}{kl} produces Ai j , . . . ,Ak l instead of the wanted
Aij , . . . ,Akl . Why? Not enough curly brackets!

Solution:
\newcommand{\\subvec}[3]{
\ensuremath{#1 {#2},\ldots,#1 {#3}}}

7 / 20

Organisation User definitions Packaging

Example: command with arguments

We may want to write a2, . . . , a7 instead of x1, . . . , xn sometimes.
So let us make things variable.

\newcommand{\\subvec}[3]{\ensuremath{#1 #2,\ldots,#1 #3}}}

Now \subvec{a}{i}{j} produces ai , . . . , aj . However,
\subvec{A}{ij}{kl} produces Ai j , . . . ,Ak l instead of the wanted
Aij , . . . ,Akl . Why? Not enough curly brackets!

Solution:
\newcommand{\\subvec}[3]{
\ensuremath{#1 {#2},\ldots,#1 {#3}}}

7 / 20

Organisation User definitions Packaging

Example: command with optional argument

We had the following definition of \subvec, with three arguments:

\newcommand{\\subvec}[3]{
\ensuremath{#1 {#2},\ldots,#1 {#3}}}

If you want, you can make the first argument optional, in the
following way:

\newcommand{\\subvec}[3][x]{
\ensuremath{#1 {#2},\ldots,#1 {#3}}}

Now \subvec{i}{j} produces xi , . . . , xj , while \subvec[a]{i}{j}
produces ai , . . . , aj .

8 / 20

Organisation User definitions Packaging

Spaces after commands

A common mistake is forgetting an extra \ after a command, for
example:
\LaTeX is a typesetting language, gives:
LATEXis a typesetting language.

\xspace, defined in \usepackage{xspace} fixes this. After the
bulk of the command, put in \xspace and everything will be fine.
\newcommand{\\texnicie}{\TeX nicie\xspace}

9 / 20

Organisation User definitions Packaging

Spaces after commands

A common mistake is forgetting an extra \ after a command, for
example:
\LaTeX is a typesetting language, gives:
LATEXis a typesetting language.

\xspace, defined in \usepackage{xspace} fixes this. After the
bulk of the command, put in \xspace and everything will be fine.
\newcommand{\\texnicie}{\TeX nicie\xspace}

9 / 20

Organisation User definitions Packaging

New environments

New environments may be defined or redefined under LATEX with
the commands

\newenvironment{\〈name〉}[narg][opt]{beg def}{end def}

\renewenvironment{\〈name〉}[narg][opt]{beg def}{end def}

In the beg def you can use arguments, but in end def you cannot!

10 / 20

Organisation User definitions Packaging

Example: environment with arguments (1/2)

\newenvironment{\comment}[1]{
\noindent\slshape Comment: #1
\begin{quote}\small\itshape}
{\end{quote}}

Now \begin{comment}{Anonymous} Let this be a
comment.\end{comment} produces:

Comment: Anonymous

Let this be a comment.

11 / 20

Organisation User definitions Packaging

Example: environment with arguments (2/2)

You cannot use arguments in the end def. But what if we want to
put the name of the person after his/her comment? There is a
trick to solve this problem:

\newsavebox{\comname}
\newenvironment{\comment}[1]{\noindent\slshape
Comment:
\sbox{\comname{#1}}\begin{quote}\small\itshape}
{\hspace*\fill\usebox{comname}\end{quote}}

12 / 20

Organisation User definitions Packaging

More on user definitions (1/3)

User definitions are scoped. Command and environment definitions
made inside an environment are unknown to LATEX outside the
environment in which they were defined.

User definitions may contain other user structures that are defined
afterwards. The other structure needs to be defined before the first
command is invoked.

You have to work like this: \newcommand{\\C}{\A \B}
normal text, without calling \C
\newcommand{\\A}{Command A} \newcommand{\\B}{Command
B}
Now \C works without errors.

13 / 20

Organisation User definitions Packaging

More on user definitions (1/3)

User definitions are scoped. Command and environment definitions
made inside an environment are unknown to LATEX outside the
environment in which they were defined.

User definitions may contain other user structures that are defined
afterwards. The other structure needs to be defined before the first
command is invoked.

You have to work like this: \newcommand{\\C}{\A \B}
normal text, without calling \C
\newcommand{\\A}{Command A} \newcommand{\\B}{Command
B}
Now \C works without errors.

13 / 20

Organisation User definitions Packaging

More on user definitions (2/3)

User definitions may be nested inside one another. For example:

\newcommand{\\five}{\newcommand{\\one}{I like \LaTeX}
\one\one\one\one\one}

Now \five produces five times the text “I like LATEX”. The
command \one cannot be used outside the command \five.

14 / 20

Organisation User definitions Packaging

More on user definitions (3/3)

If you want to provide arguments to nested commands, the
symbols for the arguments need to be distinguished. The symbols
for the outer definition are the normal #1, . . . ,#9, while those for
the outer one are ##1, . . . ,##9. For each level of nesting, the
amount
of #’s is to be doubled.

Example:
\newcommand{\\five}[1]{\newcommand{\\one}[1]{\texttt{##1}}
\one{#1}\one{#1}\one{#1}\one{#1}\one{#1}}

15 / 20

Organisation User definitions Packaging

Dirty hacks

To create multiple commands that almost do the same, you can
use \@ifnextchar as follows:
\newcommand{\\fancy}{\@ifnextchar*{cmd with star}{cmd
without star} Other stuff}

This command can then be used as follows:
\fancy or \fancy*

Also really useful if you want to break out of the 1 optional
arguments and then required arguments box.
http://tug.ctan.org/tex-archive/support/newcommand/
provides you with a handy way of doing this.

16 / 20

http://tug.ctan.org/tex-archive/support/newcommand/

Organisation User definitions Packaging

Dirty hacks

To create multiple commands that almost do the same, you can
use \@ifnextchar as follows:
\newcommand{\\fancy}{\@ifnextchar*{cmd with star}{cmd
without star} Other stuff}

This command can then be used as follows:
\fancy or \fancy*

Also really useful if you want to break out of the 1 optional
arguments and then required arguments box.
http://tug.ctan.org/tex-archive/support/newcommand/
provides you with a handy way of doing this.

16 / 20

http://tug.ctan.org/tex-archive/support/newcommand/

Organisation User definitions Packaging

Structuring user definitions

There are two ways to make a structured collection of your user
definitions:

making a package, *.sty;

making a class, *.cls.

A class contains information about how to turn logical structure
(like \chapter) into formatting (like ‘18pt bold ragged right’). A
package contains features independent of the class (such as color
or included graphics).

We will go into the details of classes and packages in a following
lecture. For now, we will concentrate on making a basic package.

17 / 20

Organisation User definitions Packaging

Structure of a package

The outline of a class or package file is:

identification the file says it is a LATEX2εpackage or class, and
gives a short description of itself;

declarations the file declares some commands and loads other
files. These commands will be just those needed for
the code used in the next part;

options the file declares and processes its options;

declarations the file does most of its work: declaring new
variables, commands, and fonts, and loading other
files.

We will tell more about options in a next lecture, for now we will
concern ourselves with the first and fourth item.

18 / 20

Organisation User definitions Packaging

Identification

Package files identify themselves by means of the following
commands:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{〈package〉}[〈date〉 〈other information〉]

For example:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackag{latexsym}[1993/06/01 Standard LaTeX
package] The date is for checking whether your version of the

package is outdated.

19 / 20

Organisation User definitions Packaging

Identification

Package files identify themselves by means of the following
commands:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{〈package〉}[〈date〉 〈other information〉]

For example:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackag{latexsym}[1993/06/01 Standard LaTeX
package] The date is for checking whether your version of the

package is outdated.

19 / 20

Organisation User definitions Packaging

Identification

Package files identify themselves by means of the following
commands:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{〈package〉}[〈date〉 〈other information〉]

For example:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackag{latexsym}[1993/06/01 Standard LaTeX
package] The date is for checking whether your version of the

package is outdated.

19 / 20

Organisation User definitions Packaging

Declarations (the fourth item)

You can put basically everything in the declaration part of your
package. However, packages are loaded in the preamble.
Therefore, you cannot put anything in the package that directly
generates output.

Usually, this part of a package (or a class) is one long list of
newcommands, newenvironments, counters (next lecture), lengths
(next lecture), pagestyles (further on), etcetera, etcetera, etcetera.

20 / 20

	Organisation
	User definitions
	Packaging

