Tentamen Voortgezette Mechanica

NS-350B, Blok 2, Retake Exam, March 13, 2014

Mark on each sheet clearly your name and collegekaartnummer.

Please use a separate sheet for each problem.

Tip: Read all questions and start with the one you find the easiest. Do not use too much time on
any one question!

1 Kepler problem

Consider a particle of reduced mass p orbiting in a central force with potential energy U = kr™
with kn > 0. [total: 35 points]

(a) Explain what the condition kn > 0 tells us about the force. (3 points)

{b) With given angular momentum ¢ sketch the effective potential energy U.g for the cases n =
2, —1 and —=3. {3+3+3 poiuts)

(¢) Find the radius at which the particle (with given angular momentum ¢) can orbit at a fixed
radius. For which value of n is this circular orbit stable (do your sketches confirm this conclu-
sion)? {644 poines)

{d) Tor the stable case show that the period of small oscillations about the circular orbit is 7,4, =
Torb/ VT + 2. {6 poiuts)

(e) Argue that if n + 2 is a rational number then these orbits are closed. {7 points)
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We are considering a slightly idealized motion of a bead of
mass m along the spoke of a rotating bicycle wheel: the bead
can move only radially, and the moment of inertia of the wheel
is given by I = M R? (with M the mass of the wheel, and R its
radius). The wheel is off the ground and rotating freely around
its axis, so the only force you need to counsider is gravity. [total:
30 points]

(a)

(b)

(d)

Beads on a Bike’s Spokes

Show that the Lagrangian of this system is given by

e L 20 1 22 232 ,
L{(¢.p,r, 7. t)=-MR$~+ -m (7'* +reg ) — mgr cos ¢,
2 2\ Figure 1: Bicycle Spoke Beads.
where the angle ¢ describes the rotation of the wheel and
r is the distance of the bead from the axis. (¥ poinrs)

Set up Lagrange Equations for this system, find the generalized forces and generalized momenta,
and write out the equations of motion for » and ¢. (5 points)

The equations of motion are coupled and not easy to solve. If we had used the Hamiltonian
H instead of the Lagrangian £ to find the equations of motion, would they (1) look different
and (2) be easier to solve? Give an argument for your answers! {1 points)

It is a reasonabe assumption that the mass of the wheel M is much larger than the mass of
the bead m, and that in order to solve the, differential equation in » we can thus consider
& = w = const. Find the solution for r(t) for the initial values 7(0) = %R and 7(0) = 0. If you
cannot solve the differential equation, partial credit will be given if you can correctly identify
the general form of the solution. {6 points)

The solution for r(f) is not periodic and will grow to infinity. In reality, beads on bike wheels
do not usually exhibit this behaviour. Argue from the forces acting on the bead and their
change in time, that - in hindsight -~ we should have expected a non-periodic motion of the
bead. Also, which physical limitations or properties of the system are not part of the above
Lagrangian, leading to the unphysical answer? (| points)
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Tumbling Rotations

In this question, we will deal with the rotation of rigid bodies in
three dimensions. Take a rectangular box of mass M and homoge- ; i

nous density p. Ag shown in the figure on the right, the box has
dimensions h < b < I and is rotating around a point along one of

its shortest edges. [total: 35 points]
(a} Calculate the inertial tensor I around the given axes and ori-
gin. (6 points) Figure 2: Rectangular Prism
, _ . with homogeneous mass dis-
(b} The 1nertml ‘tensor C(?HSISCS of moments of m‘erfm and p?ﬁ'()d- tribution. The origin is in the
ucts (;)f tnertia. Explain these two tgx’xns .and give the physical .ontre of one of the four short-
meaning of the two elements of the inertial tensor I, and I, o4 edges.
for a rotation & around an arbitrary axis. Argue from symme-
try whether one of those two elements has to always be larger
than the other. (3 points)
(¢} Around which of the three axes given in the figure can the body only rotate if there is an
external torque? Give an explanation why this is so. {3 points)
(d) Are any of the axes given in the figure principal ares of the body? Start by explaining what a
“prinicpal axis” is! (2 points)
Let us now consider rotations of the body occuring without an external torque (free rotations):
(e} Through which point (origin) do we find the principal axes which correspond to the smallest
principal moments M7 What is a “principal moment” and which direction will the principal
axes have in this case? {3 points)
(f) Find the general Euler Equations (no external torque) for the box. How many different principal

moments do we find? (3 +1 points)

In the final exam this year, we have considered Earth to be a spinning top with Ay = Ay # Ay,

This led us to find a harmonic disturbance of the main rotational axis €;, namely the “Chandler
Wobble”. Some of vou pointed out that the Earth actually does have three distinct principal
moments A << Ay <. Ay. Let us find out what this means for the stability of harmonic disturbances:

(8)

(h)

We start with a rotation mainly around €s, or in other words w3 3 we,w;. Using the Euler
Equations, show that this means that ws is close to constant. (2 pomrs)

Use the above fact to simplify the Euler Equations for w; and ws and solve the differential
pirty q

equations. {4 points)

(Hint: a useful trial solution is w1 2(t) = Aett: also. remember that A; < Ay < Ay).

Now repeat the calculations in (h) for the case that the initial rotation was (1) mainly around
2

éy and (2) mainly around éy. {3 +3 points)

While the solutions you found in (h) and (i) look similar, there are important differences in the
long-term behaviour. Discuss these differences in terms of stabilty (or lack of stability) of the
initial rotation. Is the “Chandler Wobble” stable? {2 poinis)
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