
Tentamen Voortgezette Mechanica
NS-350B, Blok 2, Final Exam, January 28, 2016

Mark on each sheet clearly your name and collegekaartnummer.
Please use a separate sheet for each problem.
To make life easier for our TAs, if possible please answer the questions in English. Read all questions
and start with the one you find the easiest. Do not use too much time on any one question!

1 Coupled Oscillations

As a model of a linear triatomic molecule (such as
CO2), consider the system shown in Fig. 1, with two
identical atoms each of mass m connected by two
identical springs to a single atom of mass M . To
simplify matters, assume that the system is confined
to move in one dimension. [total 15 pt]

(a) Write down the Lagrangian and find the normal frequencies of the system. (2+8 points)

(b) One of the eigenvalues of the characteristic matrix is zero. Once you use the zero eigenvalue
in the characteristic matrix, you will find that the following symmetry property of it; namely
that the sum of all the row elements (and also the column elements) is zero. Use this property
to ”guess” the eigenvector corresponding to the zero eigenvalue. Provide the physical reason
(look at the figure!) for why this eigenvector must lead to a zero eigenvalue. (2+3 points)

1.1 Solution

See figure 1 for the solution.
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Figure 1: Solution to problem 1
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2 Machine of Atwood with a spring

Two masses m1 en m2 are connected by a mass-less line of
length L which runs without friction over two pulleys . Be-
tween mass 1 and the line there is an ideal spring with a spring
constant k; the motion of mass 1 is limited to the vertical y-
direction. Mass 2, on the other hand, can move freely in the
plane of the drawing. The extension s of the spring is mea-
sured from its equilibrium point, not from the point of zero
force on the spring.

You may assume that the motions occur in such a manner that neither spring nor masses ever
jump over the pulleys. Please note that part e) is on the next page. [total: 17 pt]

a) Calculate the potential energy U and the kinetic energy T of this system in the given coordi-
nates. (5 point)

b) Calculate the Lagrangian L and the generalized moments p`, ps en pθ. (4 point)

c) From this, find the Hamiltonian H(`, s, θ, p`, ps, pθ) and show that it is equal to T +U . (5 point)

d) Which conserved quantity in this system is not connected to an ignorable coordinate? (1 point)

e) The Hamilton Formalism (L, H) and the laws of Newton are equivalent, yet some systems are
easy to solve in one of them, while difficult in the other. Give one example each – including a
short(!) argument for your choices – where (i) it is better to use the Hamilton formalism and
(ii) where directly using the laws of Newton is the better choice. (2 points)

2.1 Solution

a) Voor de potengiële energie V berekenen wij zwartekrachtspotentiaal en veerpotentiaal:

U =
1

2
k (s+ so)2 −m1g (L− `+ (s+ so))−m2g` cos θ

=
1

2
ks2 + ksos+m1g`−m1gs−m2g` cos θ + const

=
1

2
ks2 +m1g`−m2g` cos θ (so

!
= m1g/k)

Voor de kinetische energie K vinden wij:

K =
1

2
m1

(
− ˙̀ + ṡ

)2
+

1

2
m2

(
v2
x,2 + v2

y,2

)
=

1

2
m1

(
˙̀2 − 2 ˙̀ṡ+ ṡ2

)
+

1

2
m2

(
˙̀2 + `2θ̇2

)
b) De Lagrangiaan is gegven door L = K − V ; een gegeneralizeerde impuls is gedefinieerd als ∂L

∂q̇i
,

ofwel ∂K
∂q̇i

omdat V in het algemeen niet van de snelheid afhangt:

p` = ∂L
∂ ˙̀ = m1

˙̀−m1ṡ+ms
˙̀

ps = ∂L
∂ṡ = −m1

˙̀ +m2ṡ (1)

pθ = ∂L
∂θ̇

= m2`
2θ̇
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c) De algemeene definitie van het Hamiltoniaan is H =
∑

i piq̇i−L. Met behulp van 2 zien wij dat
dit inderdaad overeenkomt met T + V . De Hamiltoniaan is:

H =
1

2m1
p2
s +

1

2m2

(
(ps + p`)

2 + p2
θ

)
+

1

2
ks2 +m1g`−m2g` cos θ

d) H = T +V is niet tijdsafhankelijk, dus is de totaale energie behouden (en verschijnt niet als een
negeerbare coördinaat)

e) Systeemen met bekende, constante krachten (vrije val) zijn het makkelijkst optelossen met
Newtonse mechanica. Hamilton zou hier allen tot meer rekenwerk leiden. Systemeen waar de
krachten niet bekend of van de snelheid / positie afhankelijk zijn los je beter met Lagrange of
Hamilton (dubble pendulum, machine van atwood).

3 One dimensional map

Consider the one-dimensional map

xn+1 =

{
3xn for 0 ≤ xn ≤ 1/3

3
2(1− xn) for 1/3 < xn ≤ 1

[total: 13 pt]

(a) Find the fixed points of this map and analyze their stability. (2+2 points)

(b) Sketch the second iterate, xn+2, of the map. Find the location of the period two orbits, and
analyze their stability. (5+4 points)

3.1 Solution
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Figure 2: Skewed tent map. The fixed points are 0 and 3/5; as the slopes are 3 and −3/2,
|f ′(x∗)| > 1 and both fixed points are unstable.

For the solution, see figures 2 and 3.
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Figure 3: Skewed tent map, second iterate. As the tent has its apex at 1/3, the second iterate
consists of a (compressed) copy between 0 and 1/3, and an inverted (compressed) copy between
1/3 and 1. The fixed points are 0, 3/7, 3/5, and 9/11. The slopes of the segments are 9, −9/2,
9/4, and −9/2; therefore all fixed points, again, are unstable.

4 Rigid Body Rotations and Chandler Wobble

We are considering rotational motion of a rigid body with
homogeneous mass distribution (mass M , density ρ). Let
us start with a triangular prism where H < B < L. [total:
15 pt]

(a) Calculate the inertial tensor I of the prism relative
to the centre of rotation and the axes shown in the
figure! (4 points)

(b) One of the given axes is a principal axis (“hoofdas”).
Identify this principal axis from the found inertial
tensor and symmetry considerations, and in doing so define the term “principal axis”. Why
do you find a principle axis for this body though it does not possess rotational symmetry? (4
points)

For the second part of this problem we consider a rigid body with only two different principal
moments λ1 = λ2 6= λ3. Our body frame, as per definition, is fixed in the centre of mass and its
axis are pointing along the principal axis of the body.

(c) Write out the three Euler Equations for this rigid body without external torque. (2 points)

(d) The rotation of Earth is well described by the Euler Equations that you have found (ê3 is the
rotational axis of earth, λ3 ≈ 306/305λ1). The Euler Equations suggest that the direction of
the angular velocity ~ω = ω1ê1 + ω2ê2 + ω3ê3 of Earth changes in time. Find the period of this
“Chandler Wobble”. (3 points)

(e) In reality, the Chandler Wobble has a period of 433 days, which is not the period you have
found. Give two potential explanations that could explain this discrepancy – other than that
we used the wrong principal axes or principal moments. (2 points)
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4.1 Solution

(a) We can calculate the elements of the inertial tensor from the formula:

I =

∫
dx

∫
dy

∫
dz ρ(x, y, z)

(x2 + y2 + z2
)
E3 −

xx xy xz
yx yy yz
zx zy zz


The integration boundaries are (−H

2 ,
H
2 ) for z, (0, L) for y and (0, B(1− y

L)) for x1.

For the moments, we need to calculate the integrals over x2, y2, and z2:

ρ
y

x2 dV = ρ

∫ H/2

−H/2
dz

∫ L

0
dy

∫ B(1−y/L)

0
x2dx =

= Hρ

∫ L

0

1

3
x3

∣∣∣∣B(1−y/L)

0

=

=
1

3
HB3ρ

∫ L

0
(1− y/L)3dy︸ ︷︷ ︸

υ=1−y/L⇒L
∫ 1
0 υ

3dυ

=
1

12
HB3Lρ =

1

6
B2M

ρ
y

y2 dV = ρH

∫ L

0
y2B(1− y

L
)dy =

=
1

12
HBL3ρ =

1

6
L2M

ρ
y

z2 dV = ρ

∫ H/2

−H/2
z2dz

∫ L

0
B(1− y/L)dy =

=
1

2
BLρ

1

3
z3

∣∣∣∣H/2
−H/2

=
1

12
MH2

For the products, we can see that all integrals over z will vanish due to symmetry, so the only
product of interest is:

y
−ρxydV = − 1

24
ρHL2B2 = − 1

12
MLB.

This leads us to:

I =
1

12
M

2L2 +H2 −LB 0
−LB 2B2 +H2 0

0 0 2B2 + 2L2

 .

(b) The z-axis is a principal axis, as for a rotation around this axis, that is for ~ω = ω3ê3, the angular
momentum is parallel to the angular velocity. In this case, ~L = I~ω = 1

12M(2B2 +L2)ω3ê3 ‖ ~ω.

Rotational Symmetry is not a requirement for the existence of principal axes. Every rigid body
has three principal axes, so it is not surprising to find them in this example. Furthermore,
there are symmetries related to ẑ, namely that the xy-plane is a (mirror)symmetry plane of
the body.

1or, of course, (0, B) for x and (0, L(1−x/B)) for y. Also, note that the order of integration is now important for
x and y!
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(c) The form of Newton’s law we are looking for is ~F = d~p
dt . For a rotation, this becomes ~Γ = d~L

dt ,

with ~Γ the torque acting on the body, and d~L
dt the change of the angular momentum in an inertial

system. To derive the Euler equation(s), we need to transform this into the (non-inertial) body
frame, where the time derivative gains an extra term:

~Γ = ~̇L+ ~ω × ~L,

where the “dot” now refers to a simple time derivative in the non-inertial coordinate sys-
tem. As the the coordinate axes of the body frame are principal axes, we know that ~L =
(λ1ω1, λ2ω2, λ3ω3). Writing out the cross product, we obtain:

λ1ω̇1 − (λ2 − λ3)ω2ω3 = Γ1

λ2ω̇2 − (λ3 − λ1)ω3ω1 = Γ2

λ3ω̇3 − (λ1 − λ2)ω1ω2 = Γ3

Without external torque and for λ1 = λ2 we get

λ1ω̇1 − (λ1 − λ3)ω2ω3 = 0

λ2ω̇2 − (λ3 − λ1)ω3ω1 = 0

λ3ω̇3 = 0

(d) We see that ω̇3 = 0 and thus ω3 = const:

ω̇1 −
(
λ1 − λ3

λ1
ω3

)
︸ ︷︷ ︸

Ωb

ω2 = 0

ω̇2 −
(
λ3 − λ1

λ1
ω3

)
ω1 = 0

You can now either use the trick of turning the two equations into a single, complex differential
equation by using ω1 + iω2 = η and therefore η̇ = −iΩbη, or by directly trying the test solutions
ω1 = ωo cos Ωbt and ω2 = −ωo sin Ωbt.

This describes a circular “wobble” of ~ω around ê3 with angular frequency Ωb = 1
305ω3. As the

latter is the rotation of earth (period roughly 1 day), the period of the Chandler Wobble is 305
days.

(e) The two assumptions that are violated are: (1) there are external (gravitational) torques acting
on earth, and (2) Earth is not a rigid body (remember the tides?). [NB:] no points were given
for pointing out that earth is not a perfect sphere (assumed by having more than one principal
moment), suggesting different principal moments or axes (explicitly stated in question), or
invoking general relativity.

7


	Coupled Oscillations
	Solution

	Machine of Atwood with a spring
	Solution

	One dimensional map
	Solution

	Rigid Body Rotations and Chandler Wobble
	Solution


