Tentamen Voortgezette Mechanica

NS-350B, Blok 2, Re-take Examn, March 12, 2015

Mark on each sheet clearly your name and collegekaartnummer.

Please use a separate sheet for each problem.

Tip: Read all questions and start with the one you find the easiest. Do not use too much time on

any one question!

1 Coupled oscillations

Two pendula, each of length £ and carrying a mass m at the
end, are coupled by a spring (see figure). When the pendula
make angles 8 and #3 with respect to the downward vertical
line, which the gravitational acceleration g points towards, the
potential energy of the coupling spring is given by

22
%( in#), — sin 83)%.

(total: 24 points)

{a) Write down the Lagrangian of the system, and derive the
equation of motion for the two angles #; and #5. (4 points)

{b) To tidy things up o bit, use the following notations:

Figure 1: Two pendula, coupled by
a spring

wg =g/t el =k/m and e=kE/(mg).

In terms of these new variables, linearize the equations of motion in (a) for small 8, and 85. (4

points)

(c¢) From the linearized equations of motion for #, and #,, identify the normal modes (4 points)
and normal frequencies (4 points) of small oscillations. What sort of coupled motions of the

pendula do these normal modes correspond to? {4 points)

(d) Assume that the amplitudes for the normal modes are real and are equal (equal to a). Schemat-
ically draw 8:(t) and 2(t) under this assumption for the case of weak spring coupling, corre-

sponding to ¢ < 1. (4 points)



2 Constrained Lagrangian

A cylinder of mass m and radius R rolls down X

a wedge of angle o fixed on a horizontal surface 8
(see Fig. 2), starting from rest at the top of
the wedge at time ¢ = 0. In order to describe
the equation of motion for the system, we adopt o

two co-ordinates at time ¢: (i) z(t) the distance I — —— 1

of the center of the cylinder from the top of the

wedge and (ii) 8{t) the rotation of a point on Figure 2: Cylinder rolling down a stationary
the periphery of the cylinder around its center. wedge.

(total: 26 points)

nt

(a) Draw the free body diagram of the cylinder clearly showing all the forces acting on the cylinder.
(4 points)

(b) Use Newton’s laws to write down equations for # and . (5 points)

We will next address the problem using constrained Lagrangian (note: solving the problem
without constraints will get you no points!).

(¢) Relate the two variables 8 and z in the form of f(#,z} = 0. This should be your constraint of
motion. (5 points)

(d) Express the Lagrangian £ in terms of # and x. (3 points)

(e) Write down the Lagrangian equations of motion using the Lagrange multiplier. What is the
physical meaning of of the Lagrange multiplier? (3+2 points)

{F) What would be the velocity of the cylinder when its centre comes down by a height H from its
initial position? (4 points)

3 Non-inertial frame

Consider a frictionless puck on a horizontal turntable that is rotating counterclockwise (i.e., arountl
the z-axis) with angular velocity £2. (total: 25 points)

{a) Write down Newton'’s second law for the coordinates x and y of the puck as seen by we, standing
on the turntable (ignore the earth’s rotation). (5 points}

{b) Solve the two equations by the trick of writing 5 = z + iy and guessing a solution of the form
7 = e, Write down the general solution. (6 points)

(c) At time ¢t = 0, I push the puck from position 7 = (xq,0) with velocity vp = (v20,vy0). Show
that
x(t) = (xo + vzot) cos QU + (vyo + Qzg)t sin Qf

and
y(t) = (To + vzot) sin Qt + (vy, + Qug)t cos Q.

(4+4 points)

(d) Describe and sketch the behaviour of the puck for large values of t. (6 points)



4

A commeon design for a future space station in both
science and science fiction is based on a rotating
“Stanford Torus"; the radius of the ring section is a,
and the distance from the centre of mass to the cen-
tre of the ring is ¢. To simplify the math, we assume
a homogeneous mass distribution in the ring (total
mass M) and neglect any contributions of the spokes
or structures in the centre. (total: 25 points)

(a)

(b)

(d)

Stanford (Torus) in Space

Figure 3: A “Stanford Torus” space station
design, external view, ca 1975 (NASA Ames
Research Centre)

Find the principal axes of this space station, and
calculate the three principal moments of inertia.
{Hint: check the definitions in the formula sec-
tion; if you cannot calculate the moments of in-
ertia, explain how many distinct moments of inertia you expect in this case and continue the
calculations denoting them Ay, Az, etc.) (8 points)

On the outer rim of the station there are 4 equidistant rocket motors used to slow down or
speed up the rotation around £, as needed. How fast does the station need to rotate so that
the centrifugal acceleration at the rim is 1 g7 How long {(order of magnitude is enough!} will
it take to reach this angular velocity? (outer diameter D = 2500 m, ring diameter d = 250 m,
M =1x10"kg. F = 175kN per rocket) (5 points)

Due to a maintenance error, the rockets did not only induce rotation around the z-axis (or
€3), but unfortunately also induced a momentary small torque around a perpendicular axis (let
us assume it was around é;). Use the Euler equations to analyze what happens to the space
station and find the angular velocities wy,wa,ws as function of time ¢, starting with w2(0) =0
en wa(0) > w;(0). (8 points)

In reality, the Stanford Torus is not a rigid body. What sort of stress would tangentially aligned
rockets cause on the torus, and where in the stress tensor would you find them? Consequently,
which strain will this cause in the torus? (4 points)
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useful coordinates for Tori: angle u around the z-axis,
angle v from the centre of the ring (distance ¢ from the z-

axis), and distance r’ from the centre of the ring: ./""':‘/:\,
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