
Tentamen Voortgezette Mechanica
NS-350B, Blok 2, Final; February 1, 2018 – Model Solution

Mark on each sheet clearly your name and collegekaartnummer.

Please use a separate sheet for each problem.

Tip: Read all questions and start with the one you find the easiest. Do not use too much time on
any one question!

1 Hamiltonian in a Central Forcefield

A particle moves under the influence of a central force ~F (~r, t) = − k
r2
e−βtr̂, where k and β are posi-

tive and constant, t is time, and r is the distance of the particle to the origin. (total: 15 points)

a) Using the general definition of a Hamiltonian, find H of this system. (6 points)

b) Use the Hamiltonian to find the equation of motion of the particle. (5 points)

c) Compare the Hamiltonian you calculated to the total energy. Why is it equal/not equal to the
total energy T + U? (2 points)

d) Is the energy of the particle conserved? Use a simple example to discuss why (not). (2 points)

1.1 Solution

a) From our study of movement under a central force, we know that the problem is essentially two-
dimensional, and we should use cylinder coordinates (r, φ). As the second question concerns the
relationship between H and the total energy, we use the basic defintion

H =
∑

piq̇i − L

to find the Hamiltonian. The Lagrangian is given by T − V , where V = −k
r exp(−βt) and

T = 1
2 ~̇r

2:

~r = r cosφx̂+ r sinφŷ ⇒~̇r =
(
ṙ cosφ− rφ̇ sinφ

)
x̂+

(
ṙ sinφ+ rφ̇ cosφ

)
ŷ

~̇r2 = ṙ2
(
sin2 φ+ cos2 φ

)
+ r2φ̇2

(
sin2 φ+ cos2 φ

)
+ · · ·

2rṙφ̇ (− cosφ sinφ+ sinφ cosφ)

We get the (expected) result L = 1
2m
(
ṙ2 + r2φ̇2

)
− U(r). From this we can calculate the

conjugate impulses pr = ∂L
∂ṙ = mṙ and pφ = ∂L

∂φ̇
= mr2φ̇. The Hamiltonian is then defined as

H =
∑

piq̇i − L = prṙ + pφφ̇− L = 1
2m
(
ṙ2 + r2φ̇2

)
+ U(r) = (1)

=
1

2m

(
p2
r +

p2
φ

r2

)
− k

r
e−βt
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b) To find the equation of motion, we need to solve the Hamilton Equations:

−∂H
∂r = ṗr =

p2φ
mr3
− k

r2
e−βt ∂H

∂pr
= ṙ = pr

m

−∂H
∂φ = ṗφ = 0 ∂H

∂pφ
= φ̇ =

pφ
mr2

⇒
{
r̈ = 1

m ṗr =
p2φ
m2r3

− k
mr2

e−βt

pφ = mr2φ̇ = const

c) Despite the form and time dependence of the potential, the only requirement for H to represent
the total energy is the choice of variables. Our variables are natural (i.e. not explicitly depending
on time), therefore H = T + U , as seen in equation 1.

d) The energy is not conserved, however it is only half right to point to the fact that the Hamiltonian
is time dependent as proof. In principle the kinetic energy can make up a loss of potential energy!
If we look at the Hamiltonian, however, we see that the potential is negative, and if we were to
start with a bound orbit (E < 0), the kinetic energy would eventually have to become negative
to conserve the total energy. As this is obviously not possible, the energy can not be conserved!

2 Rigid Body Rotations and Chandler Wobble

We are considering rotational motion of a rigid body with
homogeneous mass distribution (mass M , density ρ). Let
us start with a triangular prism where H < B < L. (to-
tal: 22 points)

(a) Calculate the inertial tensor I of the prism relative
to the centre of rotation and the axes shown in the
figure! (8 points)

(b) One of the given axes is a principal axis (“hoofdas”).
Identify this principal axis from the found inertial
tensor and symmetry considerations, and in doing so define the term “principal axis”. Why
do you find a principle axis for this body though it does not possess rotational symmetry? (4
points)

For the second part of this problem we consider a rigid body with only two different principal
moments λ1 = λ2 6= λ3. Our body frame, as per definition, is fixed in the centre of mass and its
axis are pointing along the principal axis of the body.

(c) Write out the three Euler Equations for this rigid body without external torque. (3 points)

(d) The rotation of Earth is well described by the Euler Equations that you have found (ê3 is the
rotational axis of earth, λ3 ≈ 306/305λ1). The Euler Equations suggest that the direction of
the angular velocity ~ω = ω1ê1 + ω2ê2 + ω3ê3 of Earth changes in time. Find the period of this
“Chandler Wobble”. (4 points)

(e) In reality, the Chandler Wobble has a period of 433 days, which is not the period you have
found. Give two potential explanations that could explain this discrepancy – other than that
we used the wrong principal axes or principal moments. (3 points)
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2.1 Solution

(a) We can calculate the elements of the inertial tensor from the formula:

I =

∫
dx

∫
dy

∫
dz ρ(x, y, z)


(x2 + y2 + z2

)
E3 −



xx xy xz
yx yy yz
zx zy zz






The integration boundaries are (−H
2 ,

H
2 ) for z, (0, L) for y and (0, B(1− y

L)) for x1.

For the moments, we need to calculate the integrals over x2, y2, and z2:

ρ
y

x2 dV = ρ

∫ H/2

−H/2
dz

∫ L

0
dy

∫ B(1−y/L)

0
x2dx =

= Hρ

∫ L

0

1

3
x3

∣∣∣∣
B(1−y/L)

0

=

=
1

3
HB3ρ

∫ L

0
(1− y/L)3dy

︸ ︷︷ ︸
υ=1−y/L⇒L

∫ 1
0 υ

3dυ

=
1

12
HB3Lρ =

1

6
B2M

ρ
y

y2 dV = ρH

∫ L

0
y2B(1− y

L
)dy =

=
1

12
HBL3ρ =

1

6
L2M

ρ
y

z2 dV = ρ

∫ H/2

−H/2
z2dz

∫ L

0
B(1− y/L)dy =

=
1

2
BLρ

1

3
z3

∣∣∣∣
H/2

−H/2
=

1

12
MH2

For the products, we can see that all integrals over z will vanish due to symmetry, so the only
product of interest is:

y
−ρxydV = − 1

24
ρHL2B2 = − 1

12
MLB.

This leads us to:

I =
1

12
M




2L2 +H2 −LB 0
−LB 2B2 +H2 0

0 0 2B2 + 2L2


 .

(b) The z-axis is a principal axis, as for a rotation around this axis, that is for ~ω = ω3ê3, the angular
momentum is parallel to the angular velocity. In this case, ~L = I~ω = 1

12M(2B2 +L2)ω3ê3 ‖ ~ω.

Rotational Symmetry is not a requirement for the existence of principal axes. Every rigid body
has three principal axes, so it is not surprising to find them in this example. Furthermore,
there are symmetries related to ẑ, namely that the xy-plane is a (mirror)symmetry plane of
the body.

1or, of course, (0, B) for x and (0, L(1−x/B)) for y. Also, note that the order of integration is now important for
x and y!
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(c) The form of Newton’s law we are looking for is ~F = d~p
dt . For a rotation, this becomes ~Γ = d~L

dt ,

with ~Γ the torque acting on the body, and d~L
dt the change of the angular momentum in an inertial

system. To derive the Euler equation(s), we need to transform this into the (non-inertial) body
frame, where the time derivative gains an extra term:

~Γ = ~̇L+ ~ω × ~L,
where the “dot” now refers to a simple time derivative in the non-inertial coordinate sys-
tem. As the the coordinate axes of the body frame are principal axes, we know that ~L =
(λ1ω1, λ2ω2, λ3ω3). Writing out the cross product, we obtain:

λ1ω̇1 − (λ2 − λ3)ω2ω3 = Γ1

λ2ω̇2 − (λ3 − λ1)ω3ω1 = Γ2

λ3ω̇3 − (λ1 − λ2)ω1ω2 = Γ3

Without external torque and for λ1 = λ2 we get

λ1ω̇1 − (λ1 − λ3)ω2ω3 = 0

λ2ω̇2 − (λ3 − λ1)ω3ω1 = 0

λ3ω̇3 = 0

(d) We see that ω̇3 = 0 and thus ω3 = const:

ω̇1 −
(
λ1 − λ3

λ1
ω3

)

︸ ︷︷ ︸
Ωb

ω2 = 0

ω̇2 −
(
λ3 − λ1

λ1
ω3

)
ω1 = 0

You can now either use the trick of turning the two equations into a single, complex differential
equation by using ω1 + iω2 = η and therefore η̇ = −iΩbη, or by directly trying the test solutions
ω1 = ωo cos Ωbt and ω2 = −ωo sin Ωbt.

This describes a circular “wobble” of ~ω around ê3 with angular frequency Ωb = 1
305ω3. As the

latter is the rotation of earth (period roughly 1 day), the period of the Chandler Wobble is 305
days.

(e) The two assumptions that are violated are: (1) there are external (gravitational) torques acting
on earth, and (2) Earth is not a rigid body (remember the tides?). [NB:] no points were given
for pointing out that earth is not a perfect sphere (assumed by having more than one principal
moment), suggesting different principal moments or axes (explicitly stated in question), or
invoking general relativity.

6cm
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3 Coupled Oscillations

6 CHAPTER 10. SMALL OSCILLATIONS

10.4 Example: Masses and Springs

Two blocks and three springs are configured as in Fig. 10.1. All motion is horizontal. When
the blocks are at rest, all springs are unstretched.

Figure 10.1: A system of masses and springs.

(a) Choose as generalized coordinates the displacement of each block from its equilibrium
position, and write the Lagrangian.

(b) Find the T and V matrices.

(c) Suppose

m1 = 2m , m2 = m , k1 = 4k , k2 = k , k3 = 2k ,

Find the frequencies of small oscillations.

(d) Find the normal modes of oscillation.

(e) At time t = 0, mass #1 is displaced by a distance b relative to its equilibrium position.

I.e. x1(0) = b. The other initial conditions are x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = 0.

Find t∗, the next time at which x2 vanishes.

Solution

(a) The Lagrangian is

L = 1
2m1 ẋ2

1 + 1
2m2 ẋ2

2 − 1
2k1 x2

1 − 1
2k2 (x2 − x1)

2 − 1
2k3 x2

2

(b) The T and V matrices are

Tij =
∂2T

∂ẋi ∂ẋj
=

(
m1 0

0 m2

)
, Vij =

∂2U

∂xi ∂xj
=

(
k1 + k2 −k2

−k2 k2 + k3

)

Two blocks and three springs are connected as shown in
the figure. All motion is horizontal. When the blocks are
at rest, all springs are unstretched. (total: 18 points)

(a) Choose x1 and x2 as generalized coordinates for the displacement from the equilibrium positions
of the blocks with masses m1 and m2, and find the equation of motion for both blocks. (5 points)

(b) Combine the set of of motions into matrix form M~̈x = −K~x. (3 points)

From now on, use m1 = 2m, m2 = m, k1 = 4k, k2 = k and k3 = 2k.

(c) Find the frequencies of (small) oscillations of the modes. (6 points)

(d) Find the normal modes of this system. Describe the physical motions to which the normal
modes correspond. (4 points)

3.1 Solutions

(a) The equations of motion are found quite easily from Hooke’s law ~F = −k~x; as the springs are
unstretched at rest:

m1ẍ1 = −k1x1 − k2(x1 − x2) = −(k1 + k2)x1 + k2x2

m2ẍ2 = −k3x2 − k2(x2 − x1) = k2x1 − (k2 + k3)x2

(b) The last simplification above directly gives us the matrix form:

M =

(
m1 0
0 m2

)
K =

(
k1 + k2 −k2

−k2 k2 + k3

)

Note the sign convention!

(c) If you calculate the determinant (λ = ω2

ω2
o
),

det

(
5− 2λ −1
−1 3− λ

)
= 0 ⇒ 2λ2 − 11λ+ 14 = 0

Giving you the same frequencies (note that I changed to natural units, i.e. ω2
o = k

m , which
drops both k and m from the equation; λ is now a multiple of the natural frequency ωo). For
λ1 = 2 we get

(
−1 1
1 1

)
· ~a1 = 0 ⇒ ~a1 =

(
1
1

)
,

and for λ2 = 7/2 we find:

(
−2 1
1 1

2

)
· ~a2 = 0 ⇒ ~a2 =

(
1
−2

)
,
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(d) This point and the next are closely connected, as we have to solve the eigenvalue and eigenvector
problem. With the values for masses and spring constants, the equations of motion are

2mẍ1 = −4kx1 − k(x1 − x2) = −5kx1 + kx2

mẍ2 = −2kx2 − k(x2 − x1) = kx1 − 3kx2

and the matrices are now:

M =

(
2 0
0 1

)
·m K =

(
5 −1
−1 3

)
· k

To state the eigenvalue problem, we write:

(K− ω2M)~a = 0

where ω is the eigenvalue (normal frequency) and ~a is an eigenvector (normal mode). You
can attempt to solve this by finding the determinant det(K − ω2M), and from there find the
eigenvectors, or you can argue from physics and find the collective (centre of mass) motion and
the relative motion of the two masses (generalized coordinates), that is the sum and difference
of the two coupled equations of motion, and show that the equations decouple:

m(2ẍ1 + ẍ2) = −2k(2x1 + x2) ⇒ ξ1 = 2x1 + x2, ω1 =

√
2k

m
=
√

2ωo, ~a2 =

(
1
−2

)

2m(ẍ1 − ẍ2) = −7k(x1 − x2) ⇒ ξ2 = x1 − x2, ω2 =

√
7

2
ωo, ~a1 =

(
1
1

)

The one conceptual jump needed here is to recognize that if either of these coordinates disap-
pears (ξi(t) = 0), you have found the amplitude ~a for the other normal mode! Alternatively
you can also invert the definitions of ξ1 and ξ2 to find that ξ1 + ξ2 = 3x1 and ξ1 − 2ξ2 = 3x2.

Physically, you have thus shown that the normal modes are (1) a collective motion that does
not stretch spring 2 (x1 = x2), and (1) an opposing motion where both masses oscillate against
each other and the amplitude of m2 is twice as big as that of m1 (x1 = −2x2).

4 Multiple Choice

The final questions for this exam are multiple choice (on a separate sheet). Please make sure to
remove the staple cleanly before you hand in the answer sheet. [total: 5+2 bonus points]
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Cronbach Alpha 0.80 Rit Item-test correlation
Overall Difficulty 0.67 should be above 0.1 Rir Item-rest correlation

1a 1b 1c 1d 2a 2b 2c 2d 2e 3a 3b 3c 3d 4a 1 2 3 4
points 6 5 2 2 8 4 3 4 3 5 3 6 4 7 15 22 18 7
difficulty 0.58 0.45 0.87 0.84 0.66 0.63 0.79 0.42 0.54 0.88 0.91 0.83 0.48 0.73 0.61 0.61 0.78 0.73
Rit 0.60 0.49 0.41 0.38 0.67 0.74 0.57 0.76 0.57 0.63 0.36 0.64 0.68 0.74 0.69 0.88 0.79 0.74
Rir 0.50 0.40 0.36 0.32 0.51 0.67 0.50 0.69 0.49 0.56 0.30 0.57 0.58 0.69 0.51 0.59 0.59 0.69

Cα should be between 0.6 and 0.8
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