
SAMPLE FINAL EXAM ADVANCED MECHANICS,
January 2020, time: 2 hours

Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

Three point masses m1, m2 and m3 move in a three-dimensional space under influence of only
gravitational forces that they exert on each other. The gravitational potential energy due to two
point masses i and j is given by

Vij =
−Gmimj

|ri − rj|
,

where G is the universal gravitational constant and ri the position vector of point mass mi.
Use as generalised coordinates the cartesian coordinates (xi, yi, zi) of each mass point with
respect to a fixed origin.

a. Find the Hamiltonian function H for this system.

b. Derive the Hamiltonian canonical equations for coordinate x1 and its associated conju-
gate momentum p1,x, where p1,x is the x-component of p1.

(If you do not have the answer of item a, use

H = α p21,x + β p1,x +
γ

((x1 − x̂)2 + ρ2)1/2
,

where α, β, γ, x̂ and ρ are constants.)

c. How many of Hamilton’s canonical equations of this system are independent?
Explain your answer.

See next page for problem 2
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Solution
a. Use definition of H on equation sheet, or argue that H = T + V (coordinates do not

depend on time).
Thus,

T =
3∑
i=1

1

2
mi(ẋ

2
i + ẏ2i + ż2i ) ,

V =
−Gm1m2

|r1 − r2|
+
−Gm1m3

|r1 − r3|
+
−Gm2m3

|r2 − r3|
.

The Hamiltonian function is to be expressed in terms of generalised coordinates and
generalised momenta. Here,

pi,x ≡
∂L

∂ẋi
=
∂T

∂ẋi
= miẋi , i = 1, 2, 3 ,

pi,y ≡
∂L

∂ẏi
=
∂T

∂ẏi
= miẏi , i = 1, 2, 3 ,

pi,z ≡
∂L

∂żi
=
∂T

∂żi
= miżi , i = 1, 2, 3 .

Note: it has been used that L = T − V and V does not depend on the velocities.

Use these relations to express T in terms of pi,x, pi,y, pi,z. This finally gives

H = T + V =
3∑
i=1

(p2i,x + p2i,y + p2i,z)

2mi

− Gm1m2

|r1 − r2|
− Gm1m3

|r1 − r3|
− Gm2m3

|r2 − r3|
.

b. Use information from equation sheet and result of item a to find

ẋ1 ≡
∂H

∂p1,x
=
p1,x
m1

and

ṗ1,x ≡ −
∂H

∂x1
=
Gm1m2(x1 − x2)
|r1 − r2|2

+
Gm1m3(x1 − x3)
|r1 − r3|2

.

c. This system has a total of 18 equations (for xi, yi, zi, pi,x, pi,y, pi,z and i = 1, 2, 3). How-
ever, 11 of them are independent, because there are seven conserved quantities:
- total energy (H does not depend explicitly on time;
- total linear momentum in the x, y and z directions, because there are no external forces;
- total angular momentum in the x, y and z directions, as there are no external torques.
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Problem 2

A coin is steadily rolling on a perfectly rough surface (see figure). The coin is a thin circular
disk with radius a, mass m, moment of inertia I with respect to axes in the plane of the coin
and moment of inertia Is along its symmetry axis.

The velocity of the centre of mass of the coin is vcm and its angular velocity is ω. The
contact point between the coin and the surface is denoted by P and the origin O is at the centre
of mass of the coin. Unit vector j′ is in the direction from P to O, unit vector k′ is along the
symmetry axis of the coin and rolling occurs in the direction opposite to that of unit vector
i′ = j′ × k′. Finally, unit vector k points in the vertical direction and g is gravity.

a. The condition of perfect rolling means that the velocity in contact point P is zero.
Use this to show that

vcm = −i′aωz′ + k′aωx′

where ωx′ = ω · i′ and ωz′ = ω · k′.

b. The angular velocity components are given by

ωx′ = θ̇ , ωy′ = φ̇ sin θ , ωz′ = ψ̇ + φ̇ cos θ ,

with θ, φ and ψ the Eulerian angles. The meaning of θ is given in the figure.
Give the definition of angles φ and ψ and make a figure in which you sketch φ and ψ.

c. Use the Lagrange formalism to show that the equations for the rolling coin read

(I +ma2)θ̈ = Iφ̇2 sin θ cos θ − (Is +ma2)Sφ̇ sin θ −mga cos θ ,
d
dt

[
Iφ̇ sin2 θ + (Is +ma2)S cos θ

]
= 0 ,

dS
dt

= 0 ,

with S = ψ̇ + φ̇ sin θ.

d. Note that θ = π/2 (upright rolling coin), φ = 0 and S= constant is a solution of the
equations of motion in item c.
Under what condition(s) is this a stable solution?

Hint: substitute θ = (π/2) + θ′, φ = φ′, with θ′ � 1 and φ′ � 1, in the equations of
motion and maintain only terms that are linear in θ and in φ′.

See next page for problem 3
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Solution
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Problem 3

A light elastic spring of stiffness K is clamped at its upper end and supports a particle of
mass m at its lower end. A second spring of stiffness K is fastened to the particle and, in
turn, supports a particle of mass 2m at its lower end. Note: the system in its equilibrium
configuration is subject only to gravitational force.
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Note: As discussed in Section 3.2, the effect of any constant external 
force on a harmonic oscillator is to shift the equilibrium position.  x1 
and x2 are the positions of the harmonic oscillator masses away from 
their respective “shifted” equilibrium positions. 

( )2 2

1 2

1 1
2

2 2
T mx m x= +� �  

( )22

1 2

1 1

2 2
V kx k x x= + − 1  

L T V= −  

( )1 1 2

1 1

,
d L Lmx kx k x x
dt x x

w w
= =− +

w w
��

� 1−  

1 1 22 0mx kx kx+ − =��  

( )2 2

2 2

2 ,
d L Lmx k x x
dt x x

w w
= =−

w w
��

� 1−  

2 2 12 0mx kx kx+ − =��  

The secular equation (11.4.12) is thus 
2

2

2
0

2

m k k
k m k

ω
ω

− + −
=

− − +
 

 
2 4 2 2 22 5 2m mk k kω ω− + + 0=  
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The homogeneous equations (Equations 11.4.10) for the two components of the jth 
eigenvector are … 
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For the first eigenvector (the anti-symmetric mode, j = 1) … 
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Letting a11 = 1, then a21 = -0.281 (Thus, in the anti-symmetric normal mode, the 
amplitude of the vibration of the second mass is 0.281 that of the first mass and 180o out 
of phase with it.) 

175

a. Find the normal frequencies of the system for vertical oscillations about the equilibrium
configuration.

b. Find the normal coordinates.
If you have no answer of item a, describe the method to find these coordinates.

c. Determine the general solution for x1(t), x2(t).
If you have no answer to item b, describe the method to find this solution.

END
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Solution
a. The kinetic and potential energies are

T =
1

2
mẋ21 +

1

2
(2m)ẋ22 (1)

V =
1

2
Kx21 +

1

2
K(x2 − x1)2 (2)

and therefore we can build the Lagrangian L = T − V ,

d

dt

∂L

∂ẋ1
= mẍ1

∂L

∂x1
= −Kx1 +K(x2 − x1) (3)

d

dt

∂L

∂ẋ2
= 2mẍ2

∂L

∂x2
= −K(x2 − x1) (4)

Thus we get∣∣∣∣−mω2 + 2K −K
−K −2mω2 +K

∣∣∣∣ = 0 → 2m2ω4−5mKω2+2K2+K2 = 0 (5)

That gives the normal frequencies:

ω2 =
5±
√

17

4
(
K

m
) (6)

b. The equations for the eigenvectors are then:(
−mω2 + 2K −K
−K −2mω2 +K

)(
a1,j
a2,j

)
= 0 (7)

Inserting ω2
1 = 5+

√
17

4
(K
m

) in it for the anti-symmetric mode we get:

[
−5 +

√
17

4
K + 2K]a11 = Ka21 a21 =

3−
√

17

4
a11 (8)

Letting a11 = 1, then a21 = −0.281. Similairly, inserting ω2
2 = 5−

√
17

4
(K
m

) for the
symmetric mode we get:

[
−5−

√
17

4
K + 2K]a12 = Ka22 a22 =

3 +
√

17

4
a12 (9)

Letting a12 = 1, then a22 = 1.781.

c. Finally the two normal modes are:

Q1 =

(
a1,1
a2,1

)
cos(ω1t− δ1) = 0 (10)

Q2 =

(
a1,2
a2,2

)
cos(ω2t− δ2) = 0 (11)

from which we can write:

x1(t) = a1,1cos(ω1t− δ1)− a1,2cos(ω2t− δ2) (12)

x2(t) = a1,2cos(ω1t− δ1) + a22cos(ω2t− δ2) (13)
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Equation sheet Advanced Mechanics
for final exam (version 2019/2020)

A1. Goniometric relations:
cos(2α) = cos2 α− sin2 α, cos(α± β) = cosα cos β ∓ sinα sin β
sin(2α) = 2 sinα cosα, sin(α± β) = sinα cos β ± cosα sin β

A2. Spherical coordinates r, θ, φ:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ
dxdydz = r2 sin θ dr dθ dφ

v = er ṙ + eθ rθ̇ + eφ rφ̇ sin θ

a = er(r̈ − rφ̇2 sin2 θ − rθ̇2) + eθ(rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ)

+ eφ(rφ̈ sin θ + 2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ)

A3. Cylindrical coordinates R, φ, z:

x = R cosφ, y = R sinφ, z = z
dxdydz = RdRdφ dz

v = eR Ṙ + eφRφ̇+ ez ż

a = eR(R̈−Rφ̇2) + eφ (2Ṙφ̇+Rφ̈) + ez z̈

A4. A× (B×C) = B(A ·C)−C(A ·B)

A5. (A×B) ·C = (B×C) ·A = (C×A) ·B

A6.
(
dQ
dt

)
fixed

=
(
dQ
dt

)
rot

+ ω ×Q

B1. Noninertial reference frames:

v = v′ + ω × r′ + V0

a = a′ + ω̇ × r′ + 2ω × v′ + ω × (ω × r′) + A0

C1. Systems of particles:

∑
iFi = dp

dt
, dL

dt
= N

C2. Angular momentum vector: L = rcm ×mvcm +
∑

i r̄i ×miv̄i
where r̄i = ri − rcm, v̄i = vi − vcm

C3. Equations of motion for 2-particle system with central force:

µ
d2R

dt2
= f(R)

R

R

with µ = m1m2/(m1 +m2) the reduced mass, R relative position vector.
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C4. Motion with variable mass:

Fext = mv̇ −Vṁ

with V velocity of ∆m relative to m.

D1. Moment of inertia tensor:

I =
∑
i

mi(ri · ri)1−
∑
i

miri ri

D2. Moment of inertia about an arbitrary axis: I = ñ I n = mk2

D3. Formulation for sliding friction: FP = µk FN

D4. Impulse and rotational impulse: P =
∫
Fdt = m∆vcm ,

∫
Ndt = P l

with l the distance between line of action and the fixed rotation axis.

E1. Transformation rule components of a real cartesian tensor, rank p, dimension N :

T ′i1i2...ip = αi1j1αi2j2 . . . αipjpTj1j2...jp

F1. Euler equations: N1 = I1 ω̇1 + ω2ω3 (I3 − I2)
(other equations follow by cyclic permutation of indices)

G1. Lagrange’s equations (first kind):

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
+ λk

∂fk
∂qi

with fk(q1, q2, . . . , qn, t) = 0 constraints.

G2. Hamilton’s variational principle:

δ
∫ t2
t1
Ldt = 0

G3. Hamiltonian function:

H = piq̇i − L

G4. Hamilton’s canonical equations:

ṗi = −∂H
∂qi

, q̇i = ∂H
∂pi
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