SAMPLE FINAL EXAM ADVANCED MECHANICS,
January 2020, time: 2 hours

Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.

Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

Three point masses m1, mo and mgz move in a three-dimensional space under influence of only
gravitational forces that they exert on each other. The gravitational potential energy due to two
point masses ¢ and j is given by

v, = —Gmim

|r,~—rj| ’

where G is the universal gravitational constant and r; the position vector of point mass m,.
Use as generalised coordinates the cartesian coordinates (x;,y;, z;) of each mass point with
respect to a fixed origin.

a. Find the Hamiltonian function H for this system.

b. Derive the Hamiltonian canonical equations for coordinate z; and its associated conju-
gate momentum p1 ,, where Plz is the x-component of p;.

(If you do not have the answer of item a, use

8]
(21 = 2)* + p?)

H=ap,+Bpia.+ 75

where «, 3,7, T and p are constants.)

¢. How many of Hamilton’s canonical equations of this system are independent?
Explain your answer.

See next page for problem 2



Solution

a. Use definition of H on equation sheet, or argue that H = T + V (coordinates do not

depend on time).
Thus,

—Gm1m2 —Gm1m3 —Gm2m3

%

Ty — o vy — 3 vy — 3|
The Hamiltonian function is to be expressed in terms of generalised coordinates and
generalised momenta. Here,
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Note: it has been used that L = 7" — V' and V' does not depend on the velocities.

Use these relations to express T in terms of p; ,, p; 4, pi .. This finally gives
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b. Use information from equation sheet and result of item a to find
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c. This system has a total of 18 equations (for x;, ¥;, 2i, Pi«, Piy, Pi,- and ¢ = 1,2, 3). How-
ever, 11 of them are independent, because there are seven conserved quantities:
- total energy (H does not depend explicitly on time;
- total linear momentum in the x, y and z directions, because there are no external forces;
- total angular momentum in the z, y and z directions, as there are no external torques.



Problem 2

A coin is steadily rolling on a perfectly rough surface (see figure). The coin is a thin circular
disk with radius a, mass m, moment of inertia I with respect to axes in the plane of the coin
and moment of inertia /; along its symmetry axis.

The velocity of the centre of mass of the coin is v, and its angular velocity is w. The
contact point between the coin and the surface is denoted by P and the origin O is at the centre
of mass of the coin. Unit vector j' is in the direction from P to O, unit vector k’ is along the
symmetry axis of the coin and rolling occurs in the direction opposite to that of unit vector
i’ = j’ x X'. Finally, unit vector k points in the vertical direction and g is gravity.

- (O

a. The condition of perfect rolling means that the velocity in contact point P is zero.
Use this to show that

Ve = —i'aw, + K aw,
where wy = w -1 and w, = w - k.
b. The angular velocity components are given by
wy =0, wylzésiHG, Wy =)+ ¢cosh

with 6, ¢ and v the Eulerian angles. The meaning of 6 is given in the figure.
Give the definition of angles ¢ and ) and make a figure in which you sketch ¢ and ).

c. Use the Lagrange formalism to show that the equations for the rolling coin read
(I +ma®)f = 1¢*sinfcosd — (I, +ma?)S¢sinf — mga cos b,

4\ Tpsin® 0 + (I, + ma?)Scosf| =0,

as __
dt _0’

with S = ) + dsin 6.
d. Note that & = 7/2 (upright rolling coin), ¢ = 0 and S=constant is a solution of the

equations of motion in item c.
Under what condition(s) is this a stable solution?

Hint: substitute 0 = (7/2) + 6',¢ = ¢/, with ¢/ < 1 and ¢’ < 1, in the equations of
motion and maintain only terms that are linear in ¢ and in ¢'.

See next page for problem 3



Solution
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Problem 3

A light elastic spring of stiffness K is clamped at its upper end and supports a particle of
mass m at its lower end. A second spring of stiffness K is fastened to the particle and, in
turn, supports a particle of mass 2m at its lower end. Note: the system in its equilibrium
configuration is subject only to gravitational force.

E k
m X7
k
2m X2
a. Find the normal frequencies of the system for vertical oscillations about the equilibrium
configuration.

F

ﬂ

b. Find the normal coordinates.
If you have no answer of item a, describe the method to find these coordinates.

c. Determine the general solution for 1 (t), z2(t).
If you have no answer to item b, describe the method to find this solution.

END



Solution

a. The kinetic and potential energies are

1 1
T = §ma;~§ + 5(Qm)x'g (1)
L, o 1 2
and therefore we can build the Lagrangian L =T — V,
d OL . OL
Ea—%:mxl a—wl:—le‘i‘K(xQ—l’l) (3)
d OL oL
——— =2ma¥ — = —K(xy — 4
dt 81‘2 s 8332 (xQ 1‘1) ( )
Thus we get
—mw? + 2K -K . 2 4 2 2 2 _
K o + K =0 —  2m W —mKw ' +2K*+K*“ =0 (5)
That gives the normal frequencies:
5+ V17 K
W= ———(—) (6)
m

b. The equations for the eigenvectors are then:

—mw? + 2K —K ap;
( -K —2mw2 + K a2 j =0 (7)
Inserting w? = %ﬁ (£) in it for the anti-symmetric mode we get:
—5+ /17 3— V17
[TK + QK](IH = Ka21 a9 — TCLH (8)
Letting a;; = 1, then ay; = —0.281. Similairly, inserting w3 = 5’?(%) for the
symmetric mode we get:
-5 — V17 3+ V17
[TK + 2K]CL12 = KCLQQ 992 — T(Zlg (9)
Letting a15 = 1, then agy = 1.781.
c. Finally the two normal modes are:
Q1 = (“1’1) cos(wit — 81) = 0 (10)
as 1
ay2
Qo = ( ) cos(wat — d2) =0 (11)
a2 2
from which we can write:
Il(t> = al,lcos(wlt — (51) — (ZLQCOS((A)Qt — 52) (12)
Zo(t) = aq2c08(wit — d1) + agacos(wat — d) (13)



Equation sheet Advanced Mechanics
for final exam (version 2019/2020)

Al.

A2.

A3.

Goniometric relations:
2

cos(2a) = cos? a — sin? a, cos(av £+ B) = cos v cos f F sinasin 3
sin(2a) = 2sin a cos a, sin(a £+ ) = sinacos 5 £ cos asin

Spherical coordinates r, 6, ¢:

x = rsinfcos ¢, y = rsinfsin ¢, z =rcosf
dxdydz = r? sin 0 dr df d¢
v = eﬂ*—i—egré—f—e(ﬁrésin@
a=e.(i — r¢?sin 0 — r62) + eg(rf + 270 — r¢*sin A cos )
-+ e¢(ré siné + 2r¢ sin @ + 2rfo cos 0)

Cylindrical coordinates R, ¢, z:

x = Rcos ¢, y = Rsin ¢, z2=2z
drdydz = RAR d¢ dz

v:eRR+e¢R¢+ezé

a=ep(R— RY?) +ey,(2Rp+ RP) +e. 2

A4. Ax(BxC)=B(A-C)-C(A-B)
AS. (AxB)-C=(BxC)-A=(CxA)-B
Ab. (%)ﬁxed = (%)rot TwxQ

B1. Noninertial reference frames:

Cl.

C2.

C3.

v=v +wxr +V,
a=a+wxr4+2wxv+wx (wxr)+ A

Systems of particles:

_dp L _
> Fi=F, i = N

Angular momentum vector: L = rey X mve, + Y. 7 X m;7;
where r,=r; — Yem, V;, =V; — Ve

Equations of motion for 2-particle system with central force:

d’R R
Py = f(R)E

with 1 = mymsy/(my + my) the reduced mass, R relative position vector.



C4. Motion with variable mass:
Fext = mV — Vm
with V velocity of Am relative to m.
D1. Moment of inertia tensor:
1= Zm,(rz . I'i) 1-— Zmiri r;
D2. Moment of inertia about an arbitrary axis: / = nIn = mk?
D3. Formulation for sliding friction: Fp = py Fiy
D4. Impulse and rotational impulse: P = [ Fdt = mAv,,, [ Ndt =PI
with [ the distance between line of action and the fixed rotation axis.
El. Transformation rule components of a real cartesian tensor, rank p, dimension /V:
Ellig...ip - ailjlaiZjQ te Oéip]'pj—’jljl--jp
F1. Euler equations: Ny = [y w; + wows (I3 — I5)
(other equations follow by cyclic permutation of indices)
G1. Lagrange’s equations (first kind):
d (0L oL 0
— - | = + M\ Ji
dt \ 9¢; dq; 0
with fi(q1, G2, - .., qn,t) = 0 constraints.
G2. Hamilton’s variational principle:
t
d [, Ldt =0
G3. Hamiltonian function:
H =p¢;— L
G4. Hamilton’s canonical equations:

. — _9oH ;o — of
bi = dg; QZ—apz.




