FINAL EXAM ADVANCED MECHANICS,
30 January 2020, 13:30-15:30, time: 2 hours

Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.

Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

A point mass m is contrained to move on the surface of a sphere with radius a. The sphere is
fixed in space, so it is neither translating nor rotating.
The point mass is subject to a single potential force, such that it has a potential energy

V = m~ sinf cos(2¢ — Q).
Here, v and (2 are constants, r, # and ¢ are spherical coordinates and ¢ is time.

a. Show that the kinetic energy of this system is of the form

T = A(¢,9) ps + B(,0) p},,

with py and p, the generalised momenta.
Give explicit expressions for the functions A(¢, #) and B(¢, 0).

b. Derive Hamiltonian’s canonical equations of this system.

c. Give two advantages and two disadvantages of using the Hamilton formalism with re-
spect to applying the Lagrange formalism.

See next page for problem 2



Solution of problem 1
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Problem 2

A simple funicular system consists of two cars on a sloping surface, which are connected by
a cable that passes over a frictionless pulley (see figure). A motor drives the rotation of the
pulley, such that the cars move in opposite directions on straight tracks. In the figure, car 1 is
moving downward and car 2 is moving upward.

In this problem, the sloping surface has an angle 3 with respect to the horizontal, the cars are
modelled as point masses m4 and ms, the pulley has a moment of inertia / and radius a, such
that the tracks are a distance 2a apart. The length of each track is [, the position of the centre
of the pulley is at z = [ and g denotes gravity.

Choose the x—, y— and z-axes and origin O as is shown in the figure (= is along the sloping
surface, z is perpendicular to the sloping surface).

a. Three important constraints of this system are

flz(l'l—f—mg—l)zo,
fa=a(0—0y) —x2=0,
fs=6—G(t)=0.

Here, x; and x,, are the x-coordinates of car 1 and car 2, respectively, # is an angle such
that 0 is the angular velocity of the pulley, 6, is a constant and G/(t) is a given function
of time.

Explain the physical meaning of these three constraints.

b. Show that the kinetic and potential energy of the funicular system are of the form

T = puy &2 + pig &2 + pig 6%,
V= V1T +I/2CL'2—|—I/36.

Express the six constants i1, (2, i3, V1, V> and v3 in terms of the given model parameters.

c. Choose x1, x5 and 6 as generalised coordinates and apply the Lagrange formalism, using
the results of items a and b, to derive expressions for
- the tensions in the cable on either side of the pulley;
- the torque that the motor exerts on the pulley to control the motion of the car.

See next page for problem 3



Solution of problem 2
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Problem 3

Three identical pendulums of mass M and length [ are suspended from a slightly elastic,
massless rod. The elasticity in the rod brings about a coupling (with constant K') between
each pair of masses m; and m;, with a corresponding potential energy V;; = %K (z; — x;)2
Here, x; and x; are the horizontal displacements of m; and m; with respect to their equilibrium
positions.

Consider only the case of small oscillations.

mg =M

a. One of the eigenfrequencies of the system is ws = (¢) 12,

Find the other eigenfrequencies of this system.

b. Find the normal modes of oscillation.
If you have no answer to item a, then describe the method to find the normal modes.

c. Determine the general solution for 6 (t), 65(t), 03(t).
If you have no answer to item b, describe the method to find this solution.

END



Solution problem 3

Three identical pendulums that are coupled through a slightly yielding rod.

a. The kinetic energy of the system is
1 : : .
T = MP <9§ + 02+ 9;) .

The potential energy is

1
V=Mg(zy + 2+ 23) + =K((x1 — 22)* + (21 — 23)* + (22 — 23)%) .

2
In this case, oscillations are small, so
1
x; = —lsinf; ~ 16;, z i =11 — cosb;] ~ 5[02-2,
hence

1 1
V= S Mgl(67 + 05 + 63) + S KP((01 — 62)° + (61 — 03)° + (62— 05)°).

Next, construct the Lagrangian L = T" — V/, derive Lagrange’s equations

d(OLY _ (oL
dt \96,) \00;

and write them in standard form. This yield the following M and K matrices:

100 o -K —K
M=M|[0 1 0 K=|-K o -K]|,
00 1 K -K a

where @ = (M(g/l) + 2K). For obtaining the eigenfrequencies, we have to evaluate
the determinant:

a— Mw? -K -K
K —w’M|=| -K a-Mw* —-K |=0.
-K —-K a— Mw?

Introducing A = (o — M w2), this expression can be rewritten as
N —3K*A—2K*=0,

or, using the hint,
(A —=2K)[N+2KA+ K* =0.

which yields \; = 2K and \; = Ay = — K.

Using the definition of \ it follows the three eigenfrequencies
g K 2 9

l
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b. Having evaluated the eigenfrequencies, we can insert them back into the equations of
motion to find the eigenvectors a . That is, starting with ws:

(K — wiM;

7k)aj3 = O .

That gives 13 = Q93 = Q33 = 1/\/§

If we repeat the calculation for w; = ws after a bit of algebra we have

0 2 1

3 Az = —1 ’ Az =

1 = 1
-1 V6 —1 V3 1

¢. The three normal modes are

a11
Ql = | @21

as;1

1.2
Q. = a2.2
as 2

1.3
Q3 = a2.3
az3

cos(wit — d1),

cos(wat — da) ,

cos(wat — d3) ,

where a; ; is the 7’th component of eigenvector j. From this, we can construct the general

solution:

61(t) = 2A5 cos(wat — 1) + Az cos(wst — 03) ,

(1) = Aj cos(wit — 1) — Ag cos(wat — d2) + Az cos(wst — d3) ,
O5(t) = — A cos(wit — 01) — Ag cos(wat — d2) + Az cos(wst — d3) ,

with Ay, Ay, A3 amplitudes and 01, o, 93 phases that depend on the initial conditions.






Equation sheet Advanced Mechanics
for final exam (version 2019/2020)

Al.

A2.

A3.

Goniometric relations:
2

cos(2a) = cos? a — sin? a, cos(av £+ B) = cos v cos f F sinasin 3
sin(2a) = 2sin a cos a, sin(a £+ ) = sinacos 5 £ cos asin

Spherical coordinates r, 6, ¢:

x = rsinfcos ¢, y = rsinfsin ¢, z =rcosf
dxdydz = r? sin 0 dr df d¢
v = eﬂ*—i—egré—f—e(ﬁrésin@
a=e.(i — r¢?sin 0 — r62) + eg(rf + 270 — r¢*sin A cos )
-+ e¢(ré siné + 2r¢ sin @ + 2rfo cos 0)

Cylindrical coordinates R, ¢, z:

x = Rcos ¢, y = Rsin ¢, z2=2z
drdydz = RAR d¢ dz

v:eRR+e¢R¢+ezé

a=ep(R— RY?) +ey,(2Rp+ RP) +e. 2

A4. Ax(BxC)=B(A-C)-C(A-B)
AS. (AxB)-C=(BxC)-A=(CxA)-B
Ab. (%)ﬁxed = (%)rot TwxQ

B1. Noninertial reference frames:

Cl.

C2.

C3.

v=v +wxr +V,
a=a+wxr4+2wxv+wx (wxr)+ A

Systems of particles:

_dp L _
> Fi=F, i = N

Angular momentum vector: L = rey X mve, + Y. 7 X m;7;
where r,=r; — Yem, V;, =V; — Ve

Equations of motion for 2-particle system with central force:

d’R R
Py = f(R)E

with 1 = mymsy/(my + my) the reduced mass, R relative position vector.



C4. Motion with variable mass:
Fext = mV — Vm
with V velocity of Am relative to m.
D1. Moment of inertia tensor:
1= Zm,(rz . I'i) 1-— Zmiri r;
D2. Moment of inertia about an arbitrary axis: / = nIn = mk?
D3. Formulation for sliding friction: Fp = py Fiy
D4. Impulse and rotational impulse: P = [ Fdt = mAv,,, [ Ndt =PI
with [ the distance between line of action and the fixed rotation axis.
El. Transformation rule components of a real cartesian tensor, rank p, dimension /V:
Ellig...ip - ailjlaiZjQ te Oéip]'pj—’jljl--jp
F1. Euler equations: Ny = [y w; + wows (I3 — I5)
(other equations follow by cyclic permutation of indices)
G1. Lagrange’s equations (first kind):
d (0L oL 0
— - | = + M\ Ji
dt \ 9¢; dq; 0
with fi(q1, G2, - .., qn,t) = 0 constraints.
G2. Hamilton’s variational principle:
t
d [, Ldt =0
G3. Hamiltonian function:
H =p¢;— L
G4. Hamilton’s canonical equations:

. — _9oH ;o — of
bi = dg; QZ—apz.
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