FINAL EXAM ADVANCED MECHANICS,
3 February 2022, 13:30-15:30, time: 2 hours

Three problems (nine items, each with a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

The motion of a star, represented as a mass point m, in a cylindrically symmetric galaxy can
be described by two cartesian coordinates = and v in the plane of symmetry of the galaxy.
Following a famous paper by Hénon & Heiles (1964), the gravitational potential of the galaxy
is modelled as

1 1
d = 2a(:1:2 +4%) + B’y — gys) ;

with o and § positive constants.
a. Find the Hamiltonian function of this system.

b. Hamilton’s canonical equations have a so-called symplectic structure. Explain what
is meant by 'symplectic structure’ and what consequence(s) this structure has for the
dynamics of the system.

c. Find one equilibrium of this system and determine its stability properties.

See next page for problem 2



Problem 2

An elongated, cylindrically shaped satellite is undergoing a pure rotation in space (see figure).
With respect to its principal axes, the moment of inertia tensor of this object reads

L 00
I 0 I, 0
0 0 I3

where I}, = I, = [ and I; = I,. Here, the third axis is the symmetry axis (the dashed line
in the figure). The x—. y— and z-axes are defined in the inertial frame and the origin O is the
centre of mass of the satellite.

¥4

The satellite is subject to a torque
N = —afw - e3)es,

where w is the angular velocity vector and e; is a unit vector along the symmetry axis of the
object (shown as a dashed line in the figure) and o is a positive constant.

a. Describe the physical meaning of / and /, and argue whether [ is larger than, equal to,
or smaller than / (no calculations needed).

b. Demonstrate, by analysing the angular momentum balance in the co-rotating frame, that
for any initial rotation that is not exactly along the symmetry axis, the rotation of the
satellite for £ — oo will be about an axis that is in the plane of symmetry and that axis
passes through the centre of mass of the satellite.

c. When viewed in the inertial frame the rotation of the satellite can be described by three
angular velocities é.8 and v, where ¢, § and 1 are Euler angles.
Copy the figure to your answer sheet, indicate the Euler angles in that figure and specify
the rotation axes that correspond to the angular velocity components $,0 and 1.

See next page for problem 3



Problem 3

A cart (mass m;) can freely oscillate on horizontal rails on the end of a spring with spring
constant k, as shown in the figure below. At the cart, a simple pendulum is mounted (length {,
mass m;), which can oscillate in the plane of the paper. Ignore effects of friction.

\/ \/

my

a. Show that, for small values of the perturbed position = and angles ¢, the Lagrangian of
this system is of the form

1. .. 1
L=)" 5 Mondydn — > o H5a50k
gk 3.k
Here, g, = z and g5 = ¢.

Find explicit expressions for the coefficient Af;; and K.

b. Compute the eigenfrequencies of the system that is described by the Lagrangian given
in item a for the case that the masses are equal, m; = my = m and for ﬁ = 2¢/l.

(If you have no answer to item a, use the general expression of the Lagrangian given in
item a.)

c. Find the general solution of the system that is described by the Lagrangian of item a.
(If you have no answer to item b, describe in detail the method to obtain this solution.)

END
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Goniometric relations:

cos(2a) = cos? o — sin® v, cos(a + 3) = cosacos 8 F sin asin 3

sin{2q) = 2sin a cos a, sin(ae £+ B8) = sina cos B + cos asin 3

Spherical coordinates r, 8, ¢:

:E—rsinBcosqb, y = rsinfsin ¢, z=rcosf

drdydz = r? sin O dr df qu

vV =e.r +eor9—|—e¢1¢sm9

a=e.(F —r¢?sin’d — r6?) + eg(rﬂ + 270 — 'r¢>2 sin 6 cos )
+es(rdsing + 21¢ sind + 2r6¢ cos b)

Cylindrical coordinates R, ¢, z:

z = Rcos ¢, y = Rsin ¢, z=2z
dxdydz = RdR dqb dz

v —eRR+e¢Rq§+ez

a=er(R~ R¢®) +e4(2Rp+ RP) +e. %

Ax(BxC)=B(A-C)-C(A-B)
(AxB)-C=(BxC)-A=(CxA) B

(%) jizea = (B) ot + 0 % Q

t / fived ~

Noninertial reference frames:

v=v+twxr +V,
a=at+twxr+2wxv+wxwxr)+ Ay

Systems of particles:

— dL _
S Fi=% & =N

Angular momentum vector: L = r¢n X mvy, + Ei ri X my;

whereT; =r, — Tem, V, = V; — Ven

Equations of motion for 2-particle system with central force:

d2R R

with ¢ = mymsy/{m, + m.) the reduced mass, R relative position vector.



C4, Motion with variable mass:

FP.‘:I.'E = mv — Vm

with V velocity of Am relative to m.

D1. Moment of inertia tensor:
I= Zmi(ri J I'g) 1-— Zmiri r;
i i

D2. Moment of inertia about an arbitrary axis: [ = iln = mk?

D3. Formulation for sliding friction: Fp = gy Fly

D4. Impulse and rotational impulse: P = [ Fdt = mAv,,, , J Nat
with [ the distance between line of action and the fixed rotation axis.

Pl

El. Euler equations: Ny = [} @y + wows (I3 — I5)
(other equations follow by cyclic permutation of indices)

F1. Lagrange’s equations (first kind):

d (OL\ _OL dfi
&(éa) 55 T Mag

with fi(q1.42,--.,qn,t) = 0 constraints.

F2. Lagrange’s equations (second kind):

d(ory _oL
dt Bq, - Bq,

with fi(q1, g2, - - . ,gn,t} = O constraints.

F3. Hamilton’s variational principle:

§ [ Lt =0

F4. Hamiltonian function:

H pzéi - L

F5. Hamilton’s canonical equations:

. 8H . _ 8H
Pisx==gz 4 = 3p,




