Retake Exam Statistical Field Theory (NS-TP402M)

Tuesday, March 16, 2010, 14:00-17:00

- 1. Use a separate sheet for every excercise.
- 2. Write your name and initials on all sheets, on the first sheet also your address and your student ID number.
- 3. Write clearly, unreadable work cannot be corrected.
- 4. You may use your notes and the book by Stoof et al.
- 5. Distribute your time evenly over all exercises, don't spend an enormous amount of time on correcting minus signs, factors of two and/or π , etc. In case you suspect that you have made a calculational error but don't have enough time to correct it, point it out in words.

Exercise 1: Spin density wave in a one-dimensional Fermi gas (70 points)

In this exercise, we consider a one-dimensional homogeneous Fermi gas of spin one-half fermions with mass m. We model the interaction between the particles with a contact interaction $V(x-x') = V_0 \delta(x-x')$ with $V_0 > 0$. Upon lowering the temperature, this system can undergo a phase transition to a so-called spin density wave, with a spin density $m_z(x,\tau)$ given by

$$\langle m_z(x,\tau)\rangle \equiv \sum_{\sigma\sigma'} \langle \phi_{\sigma}^*(x,\tau) \tau_{\sigma\sigma'}^z \phi_{\sigma'}(x,\tau) \rangle / 2 = A \cos(qx+\theta)$$
.

Here, τ^z is the Pauli matrix

$$\tau^z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right),$$

and A, q, and θ are real numbers, with A the amplitude of the spin density wave, θ the phase, and q its wave number. To describe the phase transition, we start out with the grand-canonical partition function given by

$$Z = \int d\left[\phi_{\uparrow}^{*}\right] d\left[\phi_{\uparrow}^{*}\right] d\left[\phi_{\downarrow}^{*}\right] d\left[\phi_{\downarrow}\right] \exp\left\{-S\left[\phi_{\uparrow}^{*}, \phi_{\uparrow}, \phi_{\downarrow}^{*}, \phi_{\downarrow}\right]/\hbar\right\} , \qquad (1)$$

where the action is given by

$$S\left[\phi_{\uparrow}^{\star},\phi_{\uparrow},\phi_{\downarrow}^{\star},\phi_{\downarrow}\right] = \int_{0}^{\hbar\beta} d\tau \int dx \phi_{\uparrow}^{\star}(x,\tau) \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} - \mu\right] \phi_{\uparrow}(x,\tau) + \int_{0}^{\hbar\beta} d\tau \int dx \phi_{\downarrow}^{\star}(x,\tau) \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} - \mu\right] \phi_{\downarrow}(x,\tau) + V_{0} \int_{0}^{\hbar\beta} d\tau \int dx \phi_{\uparrow}^{\star}(x,\tau) \phi_{\downarrow}^{\star}(x,\tau) \phi_{\downarrow}(x,\tau) \phi_{\uparrow}(x,\tau) .$$

$$(2)$$

a) (5 points) Show that the interaction can be split in two parts according to

$$V_0\phi_1^{\star}(x,\tau)\phi_1^{\star}(x,\tau)\phi_1(x,\tau)\phi_1(x,\tau) = \frac{V_0}{4} \left[\sum_{\sigma} \phi_{\sigma}^{\star}(x,\tau)\phi_{\sigma}(x,\tau) \right]^2 - \frac{V_0}{4} \left[\sum_{\sigma\sigma'} \phi_{\sigma}^{\star}(x,\tau)\tau_{\sigma\sigma'}^{z}\phi_{\sigma'}(x,\tau) \right]^2.$$

In the remainder of this exercise we ignore the first term on the right-hand side of the above decomposition of the interaction.

b) (10 points) Decouple the remaining part of the interaction with a Hubbard-Stratonovich transformation to the spin density $m_z(x,\tau)$ and show that after the transformation we have that

$$Z = \int d[m_z] d\left[\phi_{\uparrow}^{\star}\right] d\left[\phi_{\uparrow}\right] d\left[\phi_{\downarrow}\right] d\left[\phi_{\downarrow}\right] \exp\left\{-S\left[\phi_{\uparrow}^{\star}, \phi_{\uparrow}, \phi_{\downarrow}^{\star}, \phi_{\downarrow}, m_z\right]/\hbar\right\} .$$

with the action

$$S\left[\phi_{\uparrow}^{\star},\phi_{\uparrow},\phi_{\downarrow}^{\star},\phi_{\downarrow},m_{z}\right] = \int_{0}^{\hbar\beta} d\tau \int dx \phi_{\uparrow}^{\star}(x,\tau) \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} - \mu\right] \phi_{\uparrow}(x,\tau)$$

$$+ \int_{0}^{\hbar\beta} d\tau \int dx \phi_{\downarrow}^{\star}(x,\tau) \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} - \mu\right] \phi_{\downarrow}(x,\tau)$$

$$+ \int_{0}^{\hbar\beta} d\tau \int dx \left\{V_{0}m_{z}^{2}(x,\tau) - V_{0}m_{z}(x,\tau) \left[\phi_{\uparrow}^{\star}(x,\tau)\phi_{\uparrow}(x,\tau) - \phi_{\downarrow}^{\star}(x,\tau)\phi_{\downarrow}(x,\tau)\right]\right\} . \tag{3}$$

c) (10 points) Perform the functional integration over the fermion fields $\phi_{\uparrow}^*, \phi_{\uparrow}, \phi_{\uparrow}^*, \phi_{\downarrow}$, so that the expression for Z is written as

$$Z = \int d[m_z] \exp\left\{-S_{\text{eff}}[m_z]/\hbar\right\} ,$$

and give the exact but formal expression for the effective action $S_{\rm eff}[m_z]$.

d) (10 points) Calculate the effective action up to second order in the field $m_z(x,\tau)$ and show that (up to irrelevant constants)

$$S_{\text{eff}}[m_z] = \int_0^{\hbar\beta} d\tau \int dx \int_0^{\hbar\beta} d\tau' \int dx' m_z(x,\tau) \left[V_0 \delta(x-x') \delta(\tau-\tau') + \frac{V_0^2}{\hbar} G_0(x-x';\tau-\tau') G_0(x'-x;\tau'-\tau) \right] m_z(x',\tau') + \mathcal{O}\left(m_z^4\right) . \tag{4}$$

NB: You do not have to show that the terms beyond second order start at order m_z^4 .

e) (15 points) To describe the phase transition we consider static, i.e., time-independent, configurations of the spin density, which we write as

$$m_z(x) = \sum_{\mathbf{k}} m_z(k) e^{ikx} .$$

Show that for these configurations the effective action becomes

$$S_{\text{eff}}[m_z] = V_0 \hbar \beta L \sum_k \left[1 + V_0 \Pi(k) \right] m_z^*(k) m_z(k) + \mathcal{O}\left(m_z^4\right) .$$

with

$$\Pi(k) = \frac{1}{L} \sum_{q} \frac{N_F(\epsilon_{k+q}) - N_F(\epsilon_q)}{\epsilon_{k+q} - \epsilon_q} \ ,$$

where L is the length of the system, $\epsilon_k = \hbar^2 k^2/(2m)$, and $N_F(x) = [e^{\beta(x-\mu)} + 1]^{-1}$ is the Fermi-Dirac distribution function with μ the chemical potential.

f) (5 points) Consider temperatures smaller than the Fermi temperature. Argue that $|\Pi(k)|$ is largest for $k = 2k_F$ with k_F the Fermi wave number. (Note that $\Pi(k)$ is negative.)

In view of this result, we keep only the $k = 2k_F$ component of the effective action, so that we take for the effective action

$$S_{\text{eff}}[m_z] = V_0 \hbar \beta L [1 + V_0 \Pi(2k_F)] m_z^*(2k_F) m_z(2k_F) + \mathcal{O}(m_z^4)$$

- g) (5 points) We define a Landau free energy density $f_L(|m_z(2k_F)|)$ according to $S_{\text{eff}}[m_z] = \hbar \beta L f_L(|m_z(2k_F)|)$. Argue that this Landau free energy describes the phase transition to the spin density wave, and give its wave vector q.
- h) (5 points) Give the equation that determines the critical temperature of the transition without evaluating it.
- i) (5 points) The Landau free energy is invariant for transformations according to $m_z(2k_F) \rightarrow m_z(2k_F)e^{i\Lambda}$, with Λ a real number. To which physical symmetry does this transformation correspond?

Exercise 2: Atom-molecule coupling (30 points)

Consider a gas of spin one-half fermionic atoms with mass m, in a box of volume V. A pair of these atoms can form a bound state with energy ϵ , i.e., a molecule. The action for the coupled atom-molecule system is given by

$$\begin{split} S\left[\phi_{\uparrow}^{\star},\phi_{\uparrow},\phi_{\downarrow}^{\star},\phi_{\downarrow}\phi_{\mathbf{m}}^{\star},\phi_{\mathbf{m}}\right] &= \int_{0}^{\hbar\beta}d\tau \int d\mathbf{x} \sum_{\sigma\in\{\uparrow,\downarrow\}} \left\{\phi_{\sigma}^{\star}(\mathbf{x},\tau) \left[\hbar\frac{\partial}{\partial\tau} - \frac{\hbar^{2}\nabla^{2}}{2m} - \mu\right]\phi_{\sigma}(\mathbf{x},\tau)\right\} \\ &+ \int_{0}^{\hbar\beta}d\tau \int d\mathbf{x} \left\{\phi_{\mathbf{m}}^{\star}(\mathbf{x},\tau) \left[\hbar\frac{\partial}{\partial\tau} - \frac{\hbar^{2}\nabla^{2}}{4m} + \epsilon - 2\mu\right]\phi_{\mathbf{m}}(\mathbf{x},\tau)\right\} \\ &+ \int_{0}^{\hbar\beta}d\tau \int d\mathbf{x} \left[\lambda\phi_{\mathbf{m}}^{\star}(\mathbf{x},\tau)\phi_{\uparrow}(\mathbf{x},\tau)\phi_{\downarrow}(\mathbf{x},\tau) + \lambda\phi_{\uparrow}^{\star}(\mathbf{x},\tau)\phi_{\uparrow}^{\star}(\mathbf{x},\tau)\phi_{\mathbf{m}}(\mathbf{x},\tau)\right], \end{split}$$

where μ is the chemical potential. The field $\phi_{\sigma}(\mathbf{x}, \tau)$, with $\sigma \in \{\uparrow, \downarrow\}$ labeling the two spin states, describes the atoms, and the field $\phi_{\mathbf{m}}(\mathbf{x}, \tau)$ describes the molecules. The molecule-molecule interaction and atom-atom interaction has been neglected.

- a) (5 points) Give the physical meaning of the last two terms in the action.
- b) (10 points) Derive an effective action for the atoms by performing the Gaussian integral over the molecule field $\phi_{\rm m}({\bf x},\tau)$, and show that this leads to an interaction term for the atoms, equal to

$$\frac{\lambda^2}{\hbar} \int_0^{\hbar\beta} d\tau \int d\mathbf{x} \int_0^{\hbar\beta} d\tau' \int d\mathbf{x}' \; \phi_{\uparrow}^*(\mathbf{x}, \tau) \phi_{\downarrow}^*(\mathbf{x}, \tau) G_{\mathrm{m}}(\mathbf{x}, \tau, \mathbf{x}', \tau') \phi_{\downarrow}(\mathbf{x}', \tau'),$$

where $G_{\rm m}(\mathbf{x},\tau,\mathbf{x}',\tau')$ is the molecule propagator. Draw the Feynman diagram corresponding to this interaction.

- c) (5 points) Give the expression for $G_{\rm m}(\mathbf{x},\tau,\mathbf{x}',\tau')$ as a Fourier expansion.
- d) (10 points) Consider the approximation in which the propagator of the molecules is frequency independent, i.e., $G_{\rm m}({\bf k},i\omega_n)\approx G_{\rm m}({\bf k},-2\mu/h)$. Show that this approximation leads to an interaction of the form

$$\int_0^{\hbar\beta} d\tau \int d\mathbf{x} \int d\mathbf{x}' \phi_{\uparrow}^{\bullet}(\mathbf{x},\tau) \phi_{\downarrow}^{\bullet}(\mathbf{x},\tau) V(\mathbf{x}-\mathbf{x}') \phi_{\downarrow}(\mathbf{x}',\tau) \phi_{\uparrow}(\mathbf{x}',\tau) .$$

and show that

$$V(\mathbf{x} - \mathbf{x}') \propto \frac{e^{-|\mathbf{x} - \mathbf{x}'|/\xi}}{|\mathbf{x} - \mathbf{x}'|}$$
,

and determine the length ξ , and in particular its dependence on $\epsilon.$