Trial Midterm Exam - “Statistical Field Theory”

October 29th, 2013
Duration of the exam: 2 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your student
1D number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes.

Exercise I - Quantum Ferromagnet: Magnons

The quantum Heisenberg ferromagnet is specified by the Hamiltonian

H=-]Y8,-S, (1)

where J > 0, Sm represents the quantum mechanical spin operator at lattice site m,
(mn) denotes the summation over neighboring sites and S2, = S(S + 1). Holstein
and Primakoff have introduced a transformation in which the spin operators S*, 5=
are specified in terms of bosonic creation and annihilation operators a' and a:

Soo=al (25 —af a2 S = (25~ al am) oy, S = S — al am.  (2)
Let us consider the problem in one dimension and put the lattice constant to unity.
At low temperatures, for S <« 1/2 we expect the deviations of the magnetization
from its value to be very small, i.e. S — (S7) = (al a,,) < S. In this case we may
expand (25 ~ af a,,)"/? in powers of a! a,,.

e (1.0 pt) 1. Show that to first order in al a,,/S the Heisenberg Hamiltonian
takes the form

H=-JNS*+JS Z (ai,ﬂ_l - a;‘n) (@ms1 — @) + higher order terms  (3)

where N is the total number of lattice sites.

e (1.0 pt) 2. Keeping fluctuations at leading order in S, the quadratic Hamilto-
nian can be diagonalized by a Fourier transformation. In this case, it is conve-
nient to impose periodic boundary conditions: S',MN = §m and a,, n = tn,.
Perform the Fourier transformation and show that the Hamiltonian takes the
form

H=-~JNS*+ Z fzwkazak + higher order terms (4)
k



where Fwy = 4JS sin?(k/2) represents the dispersion relation of spin excita-
tions. Calculate also the limit k — 0 of the dispersion relation. These massless
low-energy excitations, known as magnons, describe the elementary spin-wave
excitations of the ferromagnet. Taking into account higher order terms, one
finds the interactions between magnons.

Exercise IT - Quantum Antiferromagnet: Magnons

The quantum Heisenberg antiferromagnet is specified by the Hamiltonian

H=JY 8,8, (5)
(m.n)

where J > 0.

We propose again to study the low-lying excitations of this system using a semi-
classical approximation, which amounts to considering the large spin limit .5 > 1 /2.
We focus here on the case of a bipartite lattice, i.e. one that can be separated into
two inter-penetrating sub-lattices A and B. In this case, the classical ground state
adopts a staggered spin configuration known as the Néel state.

(1.5 pt) 1. Before studying the fluctuations around this ground state, we apply
a canonical transformation in order to rotate the spins of sublattice B by =
around the z-axis. Write the transformed spin operators of the B sublattice
Spg in terms of the original ones Si. Deduce the expression of the Hamiltonian
of the system in terms of S4 and Sp.

e (1.0 pt) 2. Using the Holstein-Primakoff transformation in the limit of large
spins, show that the Hamiltonian takes the form

H=—-JNS*+JS Z (ajnam + a:nﬂamH + a:'n(zinﬂ + amamﬂ) + higher order terms
m

(6)

e (1.5 pt) 3. Introduce the Fourier transform for the creation and annihilation
operators, and write the Hamiltonian in terms of the latter.

e 4. Show that the Hamiltonian can be diagonalized into

1
H=-~JNS*+2JSS |sink] [ afax + = ). 7
NS? 4 Ek:{sm | <akak +- 2) (7)
For this, we introduce new operators
o = Ara_y + BWL (8)

with A, and By as real and even functions of the momentum.

(SN



(1.0 pt)(1) Show that in order for the new operators to be bosonic, the functions
Ag and By have to obey A7 — B} = 1. Show that the vanishing of the off-
diagonal terms of the Hamiltonian implies

[(Ay) cos(k) + (By)cos(k) — 24 Byi] = 0. (9)

(1.0 pt)(ii) Solve then for the functions Ay and By, and show that the obtained
form of the functions leads to Eq. (7).

e (1.0 pt) 5. The difference between a ferromagnet and an antiferromagnet
appears when considering the behavior of the magnetization and staggered
magnetization (magnetization at one of the subattices) at a finite temperature.
The reduction of these observables is given by

A
AM = a/ dkng(k), (10)
0

where o is a constant,
1

np =
exp ({%}—) -1

is the Bose-Einstein distribution, ¢(k) is the low-energy dispersion of the
magnons, and A is the momentum up to which the low-energy approxima-
tion is valid. Contrast the behavior of the magnetization and the staggered
magnetization at a finite temperature 7"

(11)

Exercise IIT (1.0 pt) When you write a coherent state representation for the
(ferromagnetic or antiferromagnetic) magnons, do you need to introduce the Grass-
mann variables? When do you need to use the latter? Explain your answer.






