Midterm Exam - “Statistical Field Theory”
November 5, 2013

1. Use a separate sheet for every exercise.
2. Write your name and initials in all sheets, on the first sheet also your address

and your student ID number.
3. Write clearly, unreadable work cannot be corrected.
4. You are NOT allowed to use any kind of books or lecture notes.

Superconductivity in Graphene

The Nobel Prize in Physics for 2010 was awarded to A. Geim and K. Novoselov
for their experimental realization of graphene. Graphene consists of a single layer
of carbon atoms arranged on a honeycomb lattice (see Fig. 1).
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Figure 1: Honeycomb lattice of carbon atoms forming graphene. The empty and
filled sites represent the atoms on the two (triangular) sublattices A and B of the

honeycomb lattice, while the vectors ¢;, with ¢ = 1,2, 3, connect the nearest neigh-
boring sites.

The effective Hamiltonian of graphene is described in terms of two species (fla-
vors) of electrons, a. b, living on two different sublattices, 4 and B. We will consider
the usual non-interacting term for the nearest-neighbors hopping (note that nearest
neighboring sites reside on different sublattices; see Fig. 1)
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where o = +1 corresponds to spin up (+1) and spin down (—1). Now, we introduce
a term describing local attractive density-density interaction,

g
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with g < 0. In order to study superconductivity in graphene, we introduce an order

parameter,
A = (aigaig) = (biybis). (3)

(1.0)(1) Perform a mean-field approximation to show that H; becomes the effective

mean-field pairing Hamiltonian
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Here N is the total number of sites in each sublattice. Expand the fields as
their mean field value plus fluctuations and keep only linear terms in the fluc-
tuations. Don’t forget that you have to re-express the fluctuations in terms of
the fields.

(0.5)(2) Show that the full Hamiltonian in the grand-canonical ensemble in momentum

space is

H = H+H,+Hp
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Write r; = 1; + & and use that e = Zti e“"‘i’, where 5:;, 1= 1,23, are the
vectors connecting nearest neighboring sites in the lattice (see Fig. 1).

.5)(8) Introducing the spinor representation,

ak,T
bk +
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the Hamiltonian can be written as
H =Y Wy + E, (7)
k
where @y is a 4 x 4 matrix and Ey = ~2¢gN|A[]? — 2uN. Determine wy.
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Consider the case ¢ = 0 in Eq. (7), when the matrix @y reads
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Diagonalize this matrix to find the eigenvalues for g = 0. You can check your
results, knowing that the result for general ¢ and ¢ (that you do not have to
derive) reads

Vo = (thnd + ap)” + g*|AP. (9)

What is the physical meaning of this diagonalization?

Starting from the partition function
Z = e P = Tre PH, (10)

determine the thermodynamical potential €). You will find that

Q= mﬁl- > In (14 e Fueor) + By, (11)
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where we have rewritten the roots of Eq. (9) using ¢’ = +1 in the form

Whooor = 0 (thud + o) + g2l A2 (12)

Show that the gap equation becomes
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where Npp(wk s07) 18 the Fermi-Dirac distribution function.

Now consider pairing between the electrons living on the nearest-neighboring
sites. Write down the order parameters characterizing possible pairings in this
case. What is the main physical difference now as compared with the onsite
pairing discussed above.



Su-Schrieffer-Heeger model of a polyacetylene chain

Polyacetylene consists of bonded CH groups forming an isomeric long-chain poly-
mer. According to molecular orbital theory, the carbon atoms are expected to be
sp?-hybridized (as in graphene) suggesting a planar configuration of the molecule.
An unpaired electron is expected to occupy a single m-orbital which is oriented per-
pendicular to the plane. The weak overlap of the m-orbitals delocalizes the electrons
into a narrow conduction band. According to the nearly free electron theory, one
might expect the half-filled conduction band of a polyacetylene chain to be metallic.
However, the energy of a half-filled band of a one-dimensional system can always be
lowered by imposing a periodic lattice distortion known as a Peierls instability (see
Figure 2). The aim of this problem is to explore this instability.
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Figure 2: Schematic representation of the polyacetylene chain with the Peierls dis-
torsion. The double bonds correspond to short links on the lattice.

(1.5)(8) At its simplest level, the conduction band of polyacetylene can be modeled
by a simple (arguably over-simplified) microscopic Hamiltonian, due to Su,
Shrieffer, and Heeger, in which the hopping matrix elements of the electrons are
modulated by the lattice distortion of the atoms. By taking the displacement
of an atomic site, labelled by n, to be u,, and treating their dynamics as
classical, the effective Hamiltonian can be cast in the form
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where, for simplicity, the boundary conditions are taken to be periodic, sum-
mation over the spins ¢ is assumed, and the lattice constant of the undistorted
lattice is set to unity. The first term describes the hopping of electrons between
neighboring sites with a matrix element modulated by the periodic distortion
of the bond-length, while the last term represents the associated increase in the
elastic energy. Taking the lattice distortion to be periodic, u, = (—1)"a, with
a < 1 as a real parameter describing the lattice distortion, and the number
of sites N to be even, show that the first term of the Hamiltonian in Fourier
space can be written as

Hy=—t 3 {[{1+a)e®™ +(1-a)la} bxo +hel} (15)
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Hint: Note that the lattice distortion lowers the symmetry of the lattice. The
Hamiltonian is most easily diagonalized by distinguishing the two sublattices
defined by taking sites labelled by even and odd integers, respectively, i.e.,
by doubling the size of the elementary unit cell. Use here that the Fourier
transform of the electron annihilation operators on the two sublattices is
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with T < m < N/2 as an integer. The doubling of the unit cell implies that
the Brillouin zone is now defined for the momenta —7/2 < k < 7/2.

Show that the spectrum of the eloctronic (tight-binding) Hamiltonian consists
of two bands (4) with energies ¢y (k) = £211/1 + (o2 — 1) sin® k.

Show that the Peierls distortion of the lattice opens up a gap in the spectrum
at the Fermi level of the half-filled system (one electron per lattice site in av-
erage).

Now, take also into consideration the elastic energy of the lattice due to the
Peierls distortion. Show that the total electronic and elastic energy of the
half-filled system in the ground state is
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Broy = 2Nk, +/ dk (k). (18)
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Show then that the one-dimensional system is always unstable towards the
Peierls distortion. To complete this calculation, you will need the approximate
formula for the (elliptic) integral,
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where a; and b; are (unspecified) numerical constants.
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