Final Exam - “Statistical Field Theory”

January 28, 2014
Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your address and
your student 1D number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes.

Exercise I - Kitaev chain

In 2001 Alexei Kitaev proposed a toy model, referred in the literature as "Kitaev chain”, and
showed how a 1) quantum nanowire can host at its ends a pair of special states precisely at
zero energy. Fach of these states represents the so-called Majorana fermion, which is a fermion
that is its own antiparticle. Kitaev chain is described through a tight-binding Hamiltonian
for spinless fermions with p-wave pairing on a one-dimensional lattice, which, in the second
quantization, reads
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where cj (¢;) is a fermionic operator creating (annihilating) a fermion at lattice site j, and N is

the number of lattice sites, assumed to be even. Furthermore, n; = c;cj is the corresponding
occupation number operator, u is the chemical potential and ¢ > 0 denotes the hopping
amplitude. Finally, A > 0 is the so-called p-wave pairing amplitude. This name stems from
the fact that this coupling describes the pairing between fermions with the same spin, and
therefore the orbital momentum of a Cooper pair has to be finite, which is equal to one in
the case considered here (the same as for the atomic p-orbitals).
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with « as the distance between two neighboring sites, and ~§[§ <k < g% and |m| <
N/2. By using these definitions, show that in the limit of a lattice of infinite length,
re., N — +oc, the Hamiltonian takes the form
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and give an explicit expression for €.



(1.0) 2. Show that the Hamiltonian (up to an irrelevant constant) can be written as
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with H = o - d(k), where di(k) = Acoska, do(k) = Asinka, d3(k) = —p — 2t coska,
and o = (01,09, 03) is the vector of Pauli matrices
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(1.0) 3. In frequency-momentum representation the action corresponding to the Hamiltonian in
Eq. (3) can be written as
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where w,, are fermionic Matsubara frequencies. Determine the poles of G(k,w) and give
their physical interpretation. In particular, comment on the case p = £2t and p # +2t.
Under which conditions are the quasi-particle excitations gapless?

(1.0) 4. Now rewrite Go(k, iwy,) in the form
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with (fu)? = e% + A?. Perform the summation over Matsubara frequencies to derive
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In the last part of this exercise, we will make a connection between the Kitaev chain and
Majorana fermions.

(1.0} 5. The fermionic creation (annihilation) operator c} (c;) can be expressed in terms of
Majorana-fermion operators v; and 7; as
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with v; = 7; and n; = n;', Determine the anticommutator {qj, 71} and compute nf and
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(1.0) 6. Now consider the case in which ¢ = 0 and t = A/2 # 0 in Hamiltonian (1). By using
the definitions in the previous exercise, introduce Majorana operators for each site j and
write down the Hamiltonian (1) in terms of the Majorana operators.

(1.0) 7. The Hamiltonian found in the previous exercise does not depend on the Majorana
fermion operator ny at the site j = 1 and v at the site j = N. What does this suggest”
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Exercise II - Superconductivity in graphene

The effective Hamiltonian of graphene is described in terms of two species of fermions
living on two different sublattices, A and B, of the honeycomb lattice. We will consider
the usual term for the nearest-neighbors hopping
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where o denotes spin up and down. Now, we introduce a local density-density interaction
term,
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The diagonal form of the non-interacting Hamiltonian ( ¢ = 0) in the momentum space
reads (up to an irrelevant constant)

Hy= Hy+ Hy =Y Wiy, (13)
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where wy = diag(p + timel, it — |, —p + thwl, = — tiwe) is a diagonal 4 x 4 matrix,
™ = D5 e®0; with d; as the vectors connecting nearest neighboring sites on the
honeycomb lattice, and the spinor representation is defined by
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In order to study superconductivity in graphene, we introduce an order parameter,

A ={ai a,1) = (b bir). (15)

(1.0) 8. Now consider the total Hamiltonian E 5 L\"D\’f
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(a) Replace the operators by fields, eg., a;, — Wo.0 and write the corresponding
action.

{(b) Now, we simplify the notation by dropping the lattice sites ;" and the imaginary
time 7 from the fields (they are implicit). Using a representation of the unity in the
form
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(17)
eliminate the quartic interaction term, and write down the effective action in terms of
the fermion fields v, 1, and the Hubbard-Stratonovich fields AP
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. Taking the Hubbard-Stratonovich fields to be constant (spatially and imaginary-time

independent), show that after integrating over the fermion fields, the partition function

can be written as I
7 e’[‘rlog{w(r )" (18)
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with G71 = Gyl + @i + gM (A, A%), where wy was given above, Ck O}\Wﬂ ﬁ{w dm
Gal = dl&g(“?h‘ﬂnv “Lfll.«)n» 'ihwn» iﬁwﬂ)? (19)

and the matrix A7 has the following form in terms of the Hubbard-Stratonovich fields

(20)

Now we want to study superconductivity in graphene. The action can then be related
to the Landau free energy f1(|A]).

(a) What is the form of f17 If there is a second order phase transition when the material
becomes superconducting, how do the coeflicients of the Landau free energy behave at
1.7

(b) Can you relate your answer of the part (a) to the results in exercise 97 For this you
may need the expansion of the logarithm,
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Do not calculate, just explain it in words.
(c) Sketch fr(]A]) versus |A] for T' > T, and for T' < T,.
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