Final Exam - "Statistical Field Theory"

January 28, 2014 Duration of the exam: 3 hours

- 1. Use a separate sheet for every exercise.
- 2. Write your name and initials in all sheets, on the first sheet also your address and your student ID number.
 - 3. Write clearly, unreadable work cannot be corrected.
 - 4. You are NOT allowed to use any kind of books or lecture notes.

Exercise I - Kitaev chain

In 2001 Alexei Kitaev proposed a toy model, referred in the literature as "Kitaev chain", and showed how a 1D quantum nanowire can host at its ends a pair of special states precisely at zero energy. Each of these states represents the so-called Majorana fermion, which is a fermion that is its own antiparticle. Kitaev chain is described through a tight-binding Hamiltonian for spinless fermions with p-wave pairing on a one-dimensional lattice, which, in the second quantization, reads

$$H = -\mu \sum_{j=1}^{N} n_j - \sum_{j=1}^{N-1} \left[t \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) - \frac{\Delta}{2} \left(c_j c_{j+1} + c_{j+1}^{\dagger} c_j^{\dagger} \right) \right]$$
(1)

where $c_j^{\dagger}(c_j)$ is a fermionic operator creating (annihilating) a fermion at lattice site j, and N is the number of lattice sites, assumed to be even. Furthermore, $n_j = c_j^{\dagger}c_j$ is the corresponding occupation number operator, μ is the chemical potential and $t \geq 0$ denotes the hopping amplitude. Finally, $\Delta \geq 0$ is the so-called p-wave pairing amplitude. This name stems from the fact that this coupling describes the pairing between fermions with the same spin, and therefore the orbital momentum of a Cooper pair has to be finite, which is equal to one in the case considered here (the same as for the atomic p-orbitals).

(1.0) 1. Introduce

$$c_j^{\dagger} = \frac{1}{\sqrt{N}} \sum_k e^{-ikaj} c_k^{\dagger}, \quad c_j = \frac{1}{\sqrt{N}} \sum_k e^{ikaj} c_k, \qquad (2)$$

with a as the distance between two neighboring sites, and $-\frac{\pi m}{aN} \le k \le \frac{\pi m}{aN}$ and $|m| \le N/2$. By using these definitions, show that in the limit of a lattice of infinite length, i.e., $N \to +\infty$, the Hamiltonian takes the form

$$H = \sum_{k} \epsilon_k c_k^{\dagger} c_k + \frac{\Delta}{2} \sum_{k} \left(e^{ika} c_{-k} c_k + e^{-ika} c_k^{\dagger} c_{-k}^{\dagger} \right), \tag{3}$$

and give an explicit expression for ϵ_k .

(1.0) 2. Show that the Hamiltonian (up to an irrelevant constant) can be written as

$$H = \frac{1}{2} \sum_{k} \begin{pmatrix} c_{k}^{\dagger} & c_{-k} \end{pmatrix} \mathbb{H} \begin{pmatrix} c_{k} \\ c_{-k}^{\dagger} \end{pmatrix}, \tag{4}$$

with $\mathbb{H} = \boldsymbol{\sigma} \cdot \mathbf{d}(\mathbf{k})$, where $d_1(\mathbf{k}) = \Delta \cos ka$, $d_2(\mathbf{k}) = \Delta \sin ka$, $d_3(\mathbf{k}) = -\mu - 2t \cos ka$, and $\boldsymbol{\sigma} \equiv (\sigma_1, \sigma_2, \sigma_3)$ is the vector of Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(5)

(1.0) **3.** In frequency-momentum representation the action corresponding to the Hamiltonian in Eq. (3) can be written as

$$S = \frac{1}{2} \sum_{k,n} \begin{pmatrix} c_k^{\dagger} & c_{-k} \end{pmatrix} \begin{pmatrix} -i\hbar\omega_n & 0 \\ 0 & -i\hbar\omega_n \end{pmatrix} \begin{pmatrix} c_k \\ c_{-k}^{\dagger} \end{pmatrix} + H$$

$$:= -\frac{1}{2} \sum_{k,n} \begin{pmatrix} c_k^{\dagger} & c_{-k} \end{pmatrix} \hbar \mathbb{G}^{-1}(k, i\omega_n) \begin{pmatrix} c_k \\ c_{-k}^{\dagger} \end{pmatrix},$$

$$(6)$$

where ω_n are fermionic Matsubara frequencies. Determine the poles of $\mathbb{G}(k,\omega)$ and give their physical interpretation. In particular, comment on the case $\mu = \pm 2t$ and $\mu \neq \pm 2t$. Under which conditions are the quasi-particle excitations gapless?

(1.0) 4. Now rewrite $\mathbb{G}_{12}(k, i\omega_n)$ in the form

$$\mathbb{G}_{12}(x,\tau;x,\tau^{+}) = -\frac{\hbar}{\hbar\beta V} \sum_{k,n} \frac{\Delta e^{-ika}}{(\hbar\omega_n)^2 + (\hbar\omega_k)^2},\tag{7}$$

with $(\hbar\omega_k)^2 \equiv \epsilon_k^2 + \Delta^2$. Perform the summation over Matsubara frequencies to derive

$$\mathbb{G}_{12}(x,\tau;x,\tau^{+}) = -\frac{1}{V} \sum_{k} \frac{\Delta e^{-ika}}{2\hbar\omega_{k}} \left\{ 1 - 2N_{\text{FD}}(\hbar\omega_{k}) \right\}. \tag{8}$$

In the last part of this exercise, we will make a connection between the Kitaev chain and Majorana fermions.

(1.0) 5. The fermionic creation (annihilation) operator c_j^{\dagger} (c_j) can be expressed in terms of Majorana-fermion operators γ_j and η_j as

$$c_j = \frac{1}{2}(\eta_j + i\gamma_j), \qquad c_j^{\dagger} = \frac{1}{2}(\eta_j - i\gamma_j)$$
(9)

with $\gamma_j = \gamma_j^{\dagger}$ and $\eta_j = \eta_j^{\dagger}$. Determine the anticommutator $\{\eta_j, \gamma_j\}$ and compute η_j^2 and γ_j^2 .

- (1.0) **6.** Now consider the case in which $\mu = 0$ and $t = \Delta/2 \neq 0$ in Hamiltonian (1). By using the definitions in the previous exercise, introduce Majorana operators for each site j and write down the Hamiltonian (1) in terms of the Majorana operators.
- (1.0) 7. The Hamiltonian found in the previous exercise does not depend on the Majorana fermion operator η_1 at the site j=1 and γ_N at the site j=N. What does this suggest?

2

Exercise II - Superconductivity in graphene

The effective Hamiltonian of graphene is described in terms of two species of fermions living on two different sublattices, A and B, of the honeycomb lattice. We will consider the usual term for the nearest-neighbors hopping

$$H_t = -t \sum_{\sigma} \sum_{\langle ij \rangle} a_{i,\sigma}^{\dagger} b_{j,\sigma} + h.c., \tag{10}$$

and the chemical potential term

$$H_{\mu} = -\mu \sum_{i,\sigma} (a_{i,\sigma}^{\dagger} a_{i,\sigma} + b_{i,\sigma}^{\dagger} b_{i,\sigma}), \tag{11}$$

where σ denotes spin up and down. Now, we introduce a local density-density interaction term,

$$H_I = g \sum_{i} \left(a_{i,\uparrow}^{\dagger} a_{i,\uparrow} a_{i,\downarrow}^{\dagger} a_{i,\downarrow} + b_{i,\uparrow}^{\dagger} b_{i,\uparrow} b_{i,\downarrow}^{\dagger} b_{i,\downarrow} \right). \tag{12}$$

The diagonal form of the non-interacting Hamiltonian (g = 0) in the momentum space reads (up to an irrelevant constant)

$$H_0 \equiv H_t + H_\mu = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \hat{\omega}_{\mathbf{k}} \Psi_{\mathbf{k}}, \tag{13}$$

where $\hat{\omega}_{\mathbf{k}} = \operatorname{diag}(\mu + t|\gamma_{\mathbf{k}}|, \mu - t|\gamma_{\mathbf{k}}|, -\mu + t|\gamma_{\mathbf{k}}|, -\mu - t|\gamma_{\mathbf{k}}|)$ is a diagonal 4×4 matrix, $\gamma_{\mathbf{k}} \equiv \sum_{\boldsymbol{\delta}_{j}} e^{i\mathbf{k}\cdot\boldsymbol{\delta}_{j}}$ with $\boldsymbol{\delta}_{j}$ as the vectors connecting nearest neighboring sites on the honeycomb lattice, and the spinor representation is defined by

$$\Psi_{\mathbf{k}} \equiv \begin{pmatrix} a_{\mathbf{k},\uparrow} \\ b_{\mathbf{k},\uparrow} \\ a_{-\mathbf{k},\downarrow}^{\dagger} \\ b_{-\mathbf{k},\downarrow}^{\dagger} \end{pmatrix}. \tag{14}$$

In order to study superconductivity in graphene, we introduce an order parameter,

$$\Delta = \langle a_{i,\downarrow} a_{i,\uparrow} \rangle = \langle b_{i,\downarrow} b_{i,\uparrow} \rangle. \tag{15}$$

(1.0) 8. Now consider the total Hamiltonian

$$H = H_t + H_\mu + H_I.$$

$$b_i \sigma^{-} \gamma + b_i \gamma$$
 (16)

- (a) Replace the operators by fields, e.g., $a_{i,\sigma} \to \psi_{a,i,\sigma}$ and write the corresponding action.
- (b) Now, we simplify the notation by dropping the lattice sites "i" and the imaginary time τ from the fields (they are implicit). Using a representation of the unity in the form

$$1 = \int [\mathcal{D}\Delta_a][\mathcal{D}\Delta_a^*][\mathcal{D}\Delta_b^*][\mathcal{D}\Delta_b^*] e^{\frac{1}{\hbar}\int d\tau \sum_i [g(\Delta_a^* + \psi_{a,\downarrow}^* \psi_{a,\uparrow}^*)(\Delta_a + \psi_{a,\uparrow} \psi_{a,\downarrow}) + g(\Delta_b^* + \psi_{b,\downarrow}^* \psi_{b,\uparrow}^*)(\Delta_b + \psi_{b,\uparrow} \psi_{b,\downarrow})]}$$

$$\tag{17}$$

eliminate the quartic interaction term, and write down the effective action in terms of the fermion fields $\psi_{a/b,\uparrow/\downarrow}$ and the Hubbard-Stratonovich fields $\Delta_{a/b}$.

Δ=const quadronic in firmionic.

A const production field field squassian intograte

(1.0) 9. Taking the Hubbard-Stratonovich fields to be constant (spatially and imaginary-time p ficult. independent), show that after integrating over the fermion fields, the partition function can be written as

$$Z = e^{\operatorname{Tr}\log(-G^{-1})},\tag{18}$$

with $G^{-1} = G_0^{-1} + \hat{\omega}_{\mathbf{k}} + g\hat{M}(\Delta, \Delta^*)$, where $\omega_{\mathbf{k}}$ was given above,

$$G_0^{-1} = \operatorname{diag}(-i\hbar\omega_n, -i\hbar\omega_n, i\hbar\omega_n, i\hbar\omega_n),$$

and the matrix M has the following form in terms of the Hubbard-Stratonovich fields

$$\hat{M}(\Delta, \Delta^*) = \begin{pmatrix} 0 & 0 & \Delta_a & 0 \\ 0 & 0 & 0 & \Delta_b \\ \Delta_a^* & 0 & 0 & 0 \\ 0 & \Delta_b^* & 0 & 0 \end{pmatrix}.$$
 (20)

(1.0) 10. Now we want to study superconductivity in graphene. The action can then be related to the Landau free energy $f_L(|\Delta|)$.

(a) What is the form of f_L ? If there is a second order phase transition when the material becomes superconducting, how do the coefficients of the Landau free energy behave at T_c ?

(b) Can you relate your answer of the part (a) to the results in exercise 9? For this you may need the expansion of the logarithm,

$$\log(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}.$$
 (21)

Do not calculate, just explain it in words.

(c) Sketch $f_L(|\Delta|)$ versus $|\Delta|$ for $T > T_c$ and for $T < T_c$.

only explain

I dol at end