Final Exam - Statistical Field Theory

January 29, 2018, 13:30 - 16:30

- 1. For every exercise, it is indicated how many points it is worth. The total exam consists of 10 points.
- 2. Write your name and initials on every sheet, on the first sheet also your address and your student ID number.
- 3. Write clearly, unreadable work cannot be corrected.
- 4. You are NOT allowed to use any kind of books or lecture notes.

Spin-density waves in graphene

1 The model (0.5 pts)

In this exercise, we are going to consider the formation of spin-density waves in graphene doped near the so-called van-Hove singularity, which is characterized by a large peak in the density of states. In undoped graphene, the electrons interact via a long-range Coulomb force. However, if graphene is doped such that the Fermi-energy is near the van-Hove singularity, this interaction is screened and the material can be described by a tight-binding model with a Hubbard term. Above a critical interaction strength $U_{\rm crit}$, a spin-density-wave phase arises.

Here, we are going to investigate this phase transition in more detail. We will perform a Hubbard-Stratonovitch transformation to derive an effective action in terms of an eight-component matrix, which accounts for charge and spin degrees of freedom in each of the A and B graphene sublattices.

The tight-binding model describing spinful electrons in graphene, including the onsite Hubbard term U is given by

$$\hat{H} = -t \sum_{\langle i,j \rangle, s} \left(a_{i,s}^{\dagger} b_{j,s} + b_{i,s}^{\dagger} a_{j,s} \right) + U \sum_{j \in \{A,B\}} c_{j,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow}, \tag{1}$$

where the operators $c_{j,s}^{(\dagger)}$ represent annihilation (creation) operators for a given spin s (\uparrow or \downarrow) and can be either $a_{j,s}^{(\dagger)}$ or $b_{j,s}^{(\dagger)}$, depending on the sublattice label A or B, respectively (see Fig. 1). Furthermore, the first sum involving the hopping parameter t only runs over the nearest neighbors i and j, which is represented by $\langle i,j \rangle$. The lattice constant $a_0 = 1$.

1. (0.5) Write down the corresponding Euclidean action for the a, b (and c) operators in the grand-canonical ensemble for this Hamiltonian. Specify the non-interacting (S_0) and interacting (S_{int}) parts explicitly.

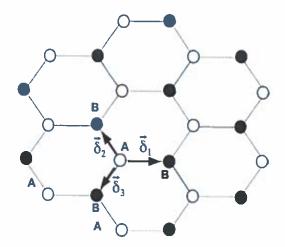


Figure 1: Honeycomb lattice of carbon atoms forming graphene. The empty and filled sites represent the atoms on the two (triangular) sublattices A and B of the honeycomb lattice, while the vectors $\vec{\delta}_i$, with i = 1, 2, 3, connect the nearest-neighboring sites.

2 The non-interacting part (3.0 pts)

We first focus on the non-interacting part of the model. Note the specific structure of graphene in Fig. 1.

- 2. (1.0) Expand the a and b fields in Fourier space,

$$c_{i,s}(\tau) = \frac{1}{\sqrt{N\hbar\beta}} \sum_{\mathbf{k},n} c_{\mathbf{k},n,s} e^{-i\mathbf{k}\cdot\mathbf{r}_i - i\omega_n \tau}, \qquad (2)$$

where, again, c can be either an a or b operator, N denotes the number of sites per sublattice, $\omega_n = \pi(2n+1)/\hbar\beta$ are the fermionic Matsubara frequencies, and $\beta = 1/(k_BT)$, and write down the non-interacting action. You might want to use $\gamma_{\bf k} = \sum_{i=1}^{i=3} \exp[-i{\bf k}\vec{\delta}_i]$. In the end, you should obtain an action of the form

$$S_{0} = -\sum_{\mathbf{k},n,s} \begin{pmatrix} a_{\mathbf{k},n,s}^{\dagger} & b_{\mathbf{k},n,s}^{\dagger} \end{pmatrix} \begin{pmatrix} \mu + i\hbar\omega_{n} & t\gamma_{\mathbf{k}} \\ t\gamma_{\mathbf{k}}^{*} & \mu + i\hbar\omega_{n} \end{pmatrix} \begin{pmatrix} a_{\mathbf{k},n,s} \\ b_{\mathbf{k},n,s} \end{pmatrix}$$
(3)

- 3. (0.5) Determine first the inverse non-interacting Green's function $G_{0,\mathbf{k},n,s;\mathbf{k}',n',s'}^{-1}$ and invert the (2×2) matrix to obtain the non-interacting Green's function $G_{0,\mathbf{k},n,s;\mathbf{k}',n',s'}$.
- 4. (1.5) If we focus on the (1,2) off-diagonal component of the Green's function, we find

$$G_{0,\mathbf{k},n,s|\mathbf{k}',n',s'}^{(1,2)} = \frac{-\hbar t \gamma_{\mathbf{k}}}{((\mu + i\hbar\omega_n)^2 - t^2|\gamma_{\mathbf{k}}|^2)} \delta_{\mathbf{k},\mathbf{k}'} \delta_{n,n'} \delta_{s,s'}.$$
(4)

Perform the Matsubara sum for this component to find an expression for $G_{0,\mathbf{k},s;\mathbf{k}',s'}^{(1,2)}$ in terms of the Fermi-Dirac distribution.

3 Treating the interactions (4.5 pts)

Now, we consider the interacting part. The idea is to rewrite the Hubbard term into electronic- and spin-degrees of freedom and later to integrate out the fermionic a and b operators. We define $c_j^{\dagger} = (c_{j\uparrow}^{\dagger}, c_{j\downarrow}^{\dagger})$

5. (1.0) Show that the Hubbard term can be rewritten as

$$c_{j,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} c_{j,\downarrow} c_{j,\uparrow} = \frac{1}{8} n_j^2 - \frac{1}{2} \mathbf{S}_j \cdot \mathbf{S}_j + \frac{1}{4} (c_{j,\uparrow}^{\dagger} c_{j,\uparrow} + c_{j,\downarrow}^{\dagger} c_{j,\downarrow}), \tag{5}$$

where $n_j = c_j^{\dagger} c_j$ is the on-site number operator and $\mathbf{S}_j = (1/2) \sum_{k=x,y,z} c_j^{\dagger} \sigma_k \hat{e}_k c_j$ describes the spin on the lattice site j, where \hat{e}_k denotes the unit vector and σ_k are the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \text{and} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (6)

We absorb the term $\frac{1}{4}(c_{j,\uparrow}^{\dagger}c_{j,\uparrow}+c_{j,\downarrow}^{\dagger}c_{j,\downarrow})$ as a shift in the chemical potential and ignore it for the remainder of the exercises.

6. (1.0) Perform a Hubbard-Stratonovich transformation that eliminates these quartic terms in the action. Therefore, we insert an identity

$$I = \mathcal{N}_{\rho} \int \mathcal{D}[\rho^{\alpha}] e^{-\frac{1}{2} \sum_{j} \rho_{j}^{\alpha} U^{-1} \rho_{j}^{\alpha}}, \tag{7}$$

and

$$I = \mathcal{N}_{\mathbf{M}} \int \mathcal{D}[\mathbf{M}^{\alpha}] e^{-\frac{1}{2} \sum_{j} \mathbf{M}_{j}^{\alpha} U^{-1} \mathbf{M}_{j}^{\alpha}}$$
 (8)

for the auxiliary bosonic fields ρ^{α} and \mathbf{M}^{α} , where α represents the sublattices A and B. Note that \mathbf{M}^{α} has three components $(M_{x}^{\alpha}, M_{y}^{\alpha}, M_{z}^{\alpha})$, such that we introduced eight auxiliary bosonic fields in this step (one corresponding to the electronic and three to the magnetic degrees of freedom in each sublattice A and B). For the remainder, you may absorb the measures \mathcal{N}_{ρ} and $\mathcal{N}_{\mathbf{M}}$ in the measure of the path integral.

Next, apply something like the following transformation (you should still add some additional factor(s)) $\rho_j^{\alpha} \to \rho_j^{\alpha} - i n_j^{\alpha} U$ and $\mathbf{M}_j^{\alpha} \to \mathbf{M}_j^{\alpha} - \mathbf{S}_j^{\alpha} U$ and eliminate the quartic term in S_{int} .

7. (1.5) Find the right Fourier transformation for ρ^{α} and \mathbf{M}^{α} , such that the action acquires the form below. You might want to use at some point the short-hand notation $k = (\omega_n, \mathbf{k})$ and $r = (\tau, \mathbf{r})$.

$$S_{0} + S_{int} = -\hbar \sum_{k,k'} \left(a_{k,\uparrow}^{\dagger} a_{k,\downarrow}^{\dagger} b_{k,\uparrow}^{\dagger} b_{k,\downarrow}^{\dagger} \right) \cdot \mathbf{G}_{k,k'}^{-1} \cdot \begin{pmatrix} a_{k',\uparrow} \\ a_{k',\downarrow} \\ b_{k',\uparrow} \\ b_{k',\downarrow} \end{pmatrix} + \frac{U^{-1}}{2} \sum_{k,\alpha} \left[|\mathbf{M}_{k}^{\alpha}|^{2} + |\rho_{k}^{\alpha}|^{2} \right]. \tag{9}$$

- 8. (0.5) Identify the self-energy and explain its physical meaning.
- 9. (0.5) Integrate out the fermionic fields (perform the path integral in the fermionic fields) and write down the effective action S_{eff} .

4 The phase transition (2.0 pts)

By integrating out the fermionic fields, you obtained a partition function of the form

$$Z = \int d[\mathbf{M}]d[\rho]e^{-S_{\text{eff}}/\hbar}.$$
 (10)

Now, we introduce the eight-component vector $\mathcal{M}_k = (\rho_k^a, \mathbf{M}_k^a, \rho_k^b, \mathbf{M}_k^b)^{\mathrm{T}}$ for convenience. In order to study the phase transition, we want to determine the spin susceptibility. Therefore, we expand the fields around their mean-field value $\mathcal{M}_k = \langle \mathcal{M}_k \rangle + \delta \mathcal{M}_k$ and demand the linear terms in $\delta \mathcal{M}_k$ to vanish, thus obtaining a self-consistency equation for the mean-field expectation values. This procedure allows us to determine the spin susceptibility χ .

10. (0.5) Why do we need the linear terms to vanish in a mean-field approximation?

A phase change to a spin-density wave occurs when the susceptibility χ diverges, and this happens at a critical value where $0 = \det(\eta \chi^{-1} - U_c)$, where η is some matrix.

- 11. (0.5) At a critical $U = U_c$, we have a phase transition. Name the difference between a classical and a quantum phase transition and explain which one occurs in graphene near the van-Hove singularity.
- 12. (1.0) Knowing that this is a 2^{nd} -order phase transition, write the Landau free energy in terms of the order parameter \mathcal{M}_k and discuss the sign of the coefficients in the expansion. Can you relate any of these coefficients to the susceptibility?