Final Exam - Statistical Field Theory

January 29, 2018, 13:30 - 16:30

1. For every exercise, it is indicated how many points it 1s worth. The total exam consists
of 10 points.

2. Write your name and initials on every sheet, on the first sheet also your address and
your student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes.

Spin-density waves in graphene

1 The model (0.5 pts)

In this exercise, we are going to consider the formation of spin-density waves in graphene
doped near the so-called van-Hove singularity, which is characterized by a large peak
in the density of states. In undoped graphene, the electrons interact via a long-range
Coulomb force. However, if graphene is doped such that the Fermi-energy is near the
van-Hove singularity, this interaction is screened and the material can be described by a
tight-binding model with a Hubbard term. Above a critical interaction strength U, a
spin-density-wave phase arises.

Here, we are going to investigate this phase transition in more detail. We will per-
form a Hubbard-Stratonovitch transformation to derive an effective action in terms of an
eight-component matrix, which accounts for charge and spin degrees of freedom in each
of the A and B graphene sublattices.

The tight-binding model describing spinful electrons in graphene, including the onsite
Hubbard term U is given by

H=—t Z ( Js-!-bl (i ) +U Z 1\c 1C3ACi T (1)

{i.g),s Jje{A.B}

(1) represent annihilation (creation) operators for a given spin s (1

or |) and can be either af,” or bj <, depending on the sublattice label A or B, respectively
(see Fig. 1). Furthermore, the first sum involving the hopping parameter ¢ only runs over

the nearest neighbors i and 7, which is represented by (7, 7}. The lattice constant ag = 1.

where the operators c;,

1. (0.5) Write down the corresponding Euclidean action for the a, b (and ¢) operators
in the grand-canonical ensemble for this Hamiltonian. Specify the non-interacting
(Sg) and interacting (S;,) parts explicitly.
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Figure 1: Honeycomb lattice of carbon atoms forming graphene. The empty and filled
sites represent the atoms on the two (triangular) sublattices A and B of the honeycomb
lattice, while the vectors 6,, with ¢ = 1,2, 3, connect the nearest-neighboring sites.

2 The non-interacting part (s.o pts)

We first focus on the non-interacting part of the model. Note the specific structure of
graphene in Fig. 1.

— 2. (1.0} Expand the a and b fields in Fourier space,

-1k r,--i-..:,,r, (2)

Ci,s(T)

where, again, ¢ can be either an a or b operator, N denotes the number of sites
per sublattice, w, = m(2n + 1)/kf are the fermionic Matsubara frequencies, and
B=1/ (ABT) and write down the non-interacting action. You might want to use
M = i exp[~ikd;]. In the end, you should obtain an action of the form

_ f t p+ibw, oty Qe s
SO - Z ( ak,n,s bk,n,s ) ( t'Yl: ,u+zﬁw,, ) ( bk.n,s ) (3)

k,n,s
3. (0.5) Determine first the inverse non- -interacting Green’s function G'0 skt of and
invert the (2x2) matrix to obtain the non-interacting Green’s function G’o e

4. (1.5) If we focus on the (1,2} off-diagonal component of the Green’s function. we
find

(L] | _ —lit e
Ok.n sk n',s ((,LL + iﬁw")z = t2|7k|2)

Jk,k'én,n'(ss,s'- (4)

Perform the Matsubara sum for this component to find an expression for Gélfi_k, v

in terms of the Fermi-Dirac distribution.
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3 Treating the interactions (4.5 pts)

Now, we consider the interacting part. The idea is to rewrite the Hubbard term into
electronic- and spin-degrees of freedom and later to integrate out the fermionic a and b

operators. We define c} = (c;'-T, c;'- N

5. (1.0) Show that the Hubbard term can be rewritten as

tot _1, 1 1 4 f
€465, CiACit = gn_,- — ESJ . Sj -+ Z':CJII.CJ':* + Cj,lcj,l)’ (5)
where n; = cjc; is the on-site number operator and S; = (1/2) 3. . . c}o‘kékcj
describes the spin on the lattice site j, where é; denotes the unit vector and oy, are
the Pauli matrices

01 0 -1 1 0
O’I=(10), oy=(z. 0) and 0':=(0_1).-(6)

We absorb the term é(C;_TCj‘T + c}_ 15,1} as a shift in the chemical potential and ignore it
for the remainder of the exercises.

6. (1.0) Perform a Hubbard-Stratonovich transformation that eliminates these quartic
terms in the action. Therefore, we insert an identity

I=prD[P°]€_%E’ U, (7)
and
I=Nme[M°]e"’}EJM?U_lM? (8}

for the auxiliary bosonic fields p® and M®, where « represents the sublattices A
and B. Note that M* has three components (M7, M, M?), such that we intro-
duced eight auxiliary bosonic fields in this step (one corresponding to the electronic
and three to the magnetic degrees of freedom in each sublattice A and B). For the
remainder, you may absorb the measures A, and My in the measure of the path
integral.

Next, apply something like the following transformation (you should still add some
additional factor(s)) p§ — pf — infU and M — M7 — 87U and eliminate the
quartic term in Sjy,.

7. (1.5) Find the right Fourier transformation for p* and M*?, such that the action
acquires the form below. You might want to use at some point the shor{-hand
notation k = (wy,, k) and r = (7, r).

(Ikr.1~
_ ay,
So + Sine = —ﬁz ( aI.-,T GL,L bI,T b;‘e.l ) -Gy - by t
ki %
bk".-.'.-
-1
+ =5 > [IMEP + 15217 ®)
k.o
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8. (0.5) Identify the self-energy and explain its physical meaning.

9. (0.5} Integrate out the fermionic fields (perform the path integral in the fermionic
fields) and write down the effective action S,g.

4 The phase transition (2.0 pts)

By integrating out the fermionic fields, you obtained a partition function of the form
Z= / dM]d[gle~%/" (10)

Now, we introduce the eight-component vector M, = (pf, My, ok, Mz )T for convenience.
In order to study the phase transition, we want to determine the spin susceptibility.
Therefore, we expand the fields around their mean-field value M, = (My) + éM;, and
demand the linear terms in 6M, to vanish, thus obtaining a self-consistency equation
for the mean-field expectation values. This procedure allows us to determine the spin
susceptibility y.

10. (0.5) Why do we need the linear terms to vanish in a mean-field approximation?

A phase change to a spin-density wave occurs when the susceptibility y diverges, and
this happens at a critical value where 0 = det (nx ™! — U.), where 7 is some matrix.

11. (0.5) At a critical U = U,, we have a plase transition. Name the difference between
a classical and a quantum phase transition and explain which one occurs in graphene
near the van-Hove singularity.

12. (1.0) Knowing that this is a 2*-order phase transition, write the Landau free energy
in terms of the order parameter M, and discuss the sign of the coefficients in the
expansion. Can you relate any of these coefficients to the susceptibility?



