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FINAL EXAM Quantum Field Theory - NS-TP401M

Thursday, February 1, 2018, 17:00-20:00, Educatorium Theatron.

1) Start every exercise on a separate sheet. Write on each sheet: your name and
initials, and your student number.

2} Please write legibly and clear. Unreadable handwriting cannot be marked!
3) The exam consists of four exercises of indicated weight.

4) No lectures notes or any other material (books, calculators, ...) are allowed.

Formularium

In this exam we use natural units, in which ¢ = A = 1. The Minkowski metric in four
spacetime dimensions is 7, = diag(—1,+1,+13+1). The Dirac gamma matrices are
denoted by +* and satisfy the Clifford algebra {v*,+"} = —2n*”I. Fourier transformation
in d dimensions is given by

d" - - .
16)= [ Gope =i, W= [ atetep). (1)

Problem 1. [26 points]

This problem is comprised of short questions to test your general knowledge. You do not
need to show any calculations in this problem, just write down the answer.

i.) (3P) Counsider a Lorentz invariant classical field theory with a given action S. How
does the Lagrangian density transform under a Lorentz transformation and how is
this related to the invariance of 57

ii.) (4P) How does a Dirac field ¥,(z) transform under a Lorentz transformation with
boost and rotation parameters w,,? And a real 4-vector field A,(z)?

iii.) (3P) Is the Dirac representation reducible or irreducible?

iv.) (4P) Write down the action for a Dirac field and discuss how it is related to left- and
right-handed Weyl fields by evaluating the kinetic term and the mass term. How
many degrees of freedom does a Dirac field have?



v.) (4P) Consider the representation denoted by (1,1/2). What are the spin states
contained in this representation? Are they bosons or fermions? Is this representation
chiral or non-chiral {i.e. containing equal or different number of left and right handed
particles).

vi.) (4P) What is the most general irreducible finite dimensional representation of Lorentz
symmetry? What are the spin states contained in this representation? These finite
representations are not unitary. How do we deal with this problem in quantum field
theory?

vii.) (4P) What are the conserved quantities corresponding to invariance under space-
time translations? How do these quantities transform under Lorentz transforma-
tions?

viii.) [Bonus]:(3P)} Suppose that the action of the classical field is invariant under a
particular global symmetry. What else should be required to maintain the same
symmetry in the quantum theory?

Problem 2. [29 points]

i) (3P) Let O(Z) be an operator defined in the Schrédinger picture. Given a Hamilto-
nian H, give the expression for the Heisenberg picture of this operator.

ii) (4P) Show that in this picture

0

i0 =0, H]. (2)

Consider the following Lagrangian density for a complex scalar field ¢ with mass m

o A
L=~ 10, = mlgl® - Sl 3)

where by the notation (z,)* we mean z,2#. You will treat ¢ and ¢! as independent fields
below.

iii) (3P) Derive the equation of motion for ¢ for A = 0.

iv) (3P) Express the general (Lorentz invariant) solution of this equation of motion
in terms of the annihilation and creation operators ag, a{: of a particle and by, b;%

of an anti-particle with momentum % , which satisfy the commutation relations
lag, a}] = [bg, b;'.,.] = (2m)33(k — p) and the rest vanishing.

v) (2P) Compute the generalized momenta 7 and 7' corresponding to ¢ and ¢' and
express the Hamiltonian density in terms of them.

vi) (3P) Compute the equation of motion of ¢, again for A = 0 using ii) and v) and check
that it is the same as your result in iii). [Hint:] You can just use the commutation
relation between canonical fields ¢, ¢' and momenta 7, 7f, no need to work out
commutators between a’s and b's.



vii) (3P) What global continuous symmetry does the lagrangian (3) has?

viii) (2P) Show that the following charge is conserved
Q= %/d:*:f(qb*?rf - ¢F) .
ix) [Bonus] (3P) Express @ in terms of creation and annihilation operators and calcu-

late the charge of each particle.

x) (3P) Write down the Feynman rules (in momentum space) for the propagator and
the vertex for this theory.

xi) (3P) Draw the Feynman diagrams contributing to the scattering amplitude for the
process ¢dt — ¢ot, up to order A%2. Do not evaluate them.

xii) [Bonus} (2P) Give the symmetry factors of these diagrams.

Problem 3. [30 points]

Reconsider the same theory in (3) but this time coupled to a gauge field. Adding the
kinetic term for the gauge field, the Lagrangian for our theory becomes

1 0 0 /\ o
L= _Z(Ew)- - ID,(£¢|- - ""-n'Ql‘:n{)l2 - ::)' Iq&l‘a (4)
where D, = 0, — ieA,.

i} (3P) This lagrangian has a local symmetry now. How do ¢, ¢' and A, transform
under this local symmetry?

ii) (TP) Write down the Feynman rules (in momentum space) for the new vertices
(those involving A,) and draw the diagrams contributing to the gauge field propa-
gator at order €* (these are one-loop diagrams). Do not evaluate the diagrams.

iii) (20P) We now wish to compute the scattering amplitude for the scattering process
opt — ¢!, at order e*. The LSZ reduction formula for this process, with the
incoming momenta labeled &, and k; and the outgoing momenta k] and &,

(i) = f 3,67 (~ 82 4 m?) dizyeo® (32 + m?)
Az, e "M (02 + m?) dizhe ™% (~02 + m?) (5)
x (0| T¢'(z1)d(z2)$(21)9" (2) |0},
brings the scattering amplitude in the following form
(F13) = (2m)* & (ky + ky — Ky — k) 4T, (6)

where 7 is the sum of the diagrams contributing to this process, with the prop-
agators of the external scalar fields replaced by 1. Explain in one line why this

3



simplification occurs? Now draw all the diagrams that contribute, and compute 7.
For this, you will need the propagator of the vector field

' Bk
=t (- S 9). Y

Do not work in a specific gauge, i.e. leave the parameter £ arbitrary. Express you
result in terms of the Mandelstam variables

§ = -(kl -+ k2)2 = —(kl + k2)2 (8)
i t=—(k — k1)? = —(ky — KS)? (9)
) u= =k — K = —(k — k). (10)

fl;)r,ues your result depend on £7 Was this expected?

Problem 4. [15 points]

Now consider making the replacement m — in in the Lagrangian (4). One obtains
the following Lagrangian

L= ~3(Fu) - D80 -~ V(9) (11)

where the potential is
V() = —w2lg + 5o (12)

with p and X positive.

i) (8P) Sketch this potential as a function of ¢; = Re¢ and ¢y = Iin ¢, as a 3D plot.
This potential has a continuum of minima, which all have |¢,;.| = ¢o. Find ¢ and
explain why all the minima have the same norm. Now one can expand V/(¢) around
the minimum ¢y, as ¢(z) = ¢p + ?lﬁ(drﬁl +id¢) for d¢y, 6¢2 < @p (this means that
¢ acquires a vacuum expectation value {¢) = ¢ and the U/(1) global symmetry is
“spontaneously broken”). What do you expect for the masses of d¢, and d¢s to be

- positive, negative or null?

ii) (7P) Expand the kinetic term | D¢/, neglecting terms cubic and quartic in A, ¢
and d¢o; Identify the coupling between A, and d¢,, as well as the mass m 4 that the
gauge field A, has acquired. (This process of spontaneously breaking a symmetry
and generating a mass for the gauge field is known as the Higgs mechanism.)

iii) [Bonus|: (3P) compute the propagotar for such a massive vector field
1 2 1 2 Il 1 132
L= —Z(Fm,)“ - §m;,‘A,‘A’ - i(c’)ﬂA’) (13)
L3
= éAu (n‘“’82 - (1 - %)8"8" - mi’q""’) A, (14)

where we reintroduced the gauge fixing parameter (which has to be included since
the mass term of the vector field is spontaneously generated).



