Statistical Field Theory Exam

January 29th, 2008

Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your student
1D number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes.

Ising Model in 3d
Consider the 3-dimensional Ising model defined by the partition function
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where the correlation matrix K;; := SC (|7 — j|) accounts for the mutual spin interactions,
h; := [H;, with H; an external magnetic field, S; € {1, —1}, and the sums in the exponent
run over the 3-d lattice sites.

(1.0) 1. We want to compute the partition function for this model approximately. To
this end, let us first note that

1= N/D[w]e—i&jw%lw,

with D[] := [[, dvs, K" the inverse of the correlation matrix and N = y/det (47K 1)
a normalization factor. Do a shift of the integration variables v; in the expression above
to get

1= N/D[w]eizij by K i+, Sivi—X,; SiKi; S )

(1.0) 2. Now, by performing a Hubbard-Stratonovich transformation, show that

Z = N/DM Ze—iiu i K 5+ 5 Silithi)
{Si}
(1.0) 3. Finally, absorbing any eventual inessential factors in the normalization term,

calculate the summation ) (s;} in the partition function to get
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and switch to integration variables ¢; := %Z y Kigle to arrive at

Z = N/D[d)]ezij $iKijdi+3; dihit+; Incosh(2 3, Kij¢;)+O(h?) )

(1.0) 4. We now resort to the simplifying assumption that we are working at low temper-
atures, so that |¢;| < 1. Then, performing a Fourier transformation ¢; — ¢x, K;; — K,
using the expansion Incosh (z) = 12° — 5z* + ..., and noting (K¢) (k) = K(k)¢(k) =
K(0)¢(k) + sk2K"(0)p(k) + O(k*), show that

S¢] = Z [k (c1 + cok - K) ¢_x + c3dch_y]
k
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where the coeflicients c; are given by
o= K(0)(1-2K(0), c=1iK"(0)(1-4K(0), c=1 = %K(O)‘l.

(1.0) 5. In the continuum limit, S [¢] takes the form

Sé] = /d3:v [ca (80)* + c1¢® + c30h + Nego'] .

Is there a phase transition in this system? If so, determine the critical temperature
T, by analyzing the coefficients of the action above and discuss the order of this phase

transition.

Superfluid-Mott Insulator transition

One of the most important experiments of the past decade in the field of cold atoms was
the first observation of a true quantum phase transition. The transition was observed with
bosonic atoms in a so-called optical lattice, which is a periodic potential for the bosons
created by laser light. The transition was from a gapless superfluid phase in which the
atoms are free to move trough the lattice to a gapped so-called Mott insulator phase, in
which there is precisely one atom per site. The system is described by a Bose-Hubbard

Hamiltonian and the action that we will use to study the system is

Sla*,a] = /0 dr [Za (h——u) )= St (7))
+= UZa (T)ai(r )],

() is the field corresponding to annihilation (creation) of a boson at optical lattice

where q,
site 7, p is the chemical potential, U is the on-site interaction energy, ¢;; are the tunneling



coefficients (t for nearest neighbours, 0 otherwise ) and the summations are over all lattice

sites.

(1.0) 1. Perform a Hubbard-Stratonovich transformation such that you obtain an effec-

tive action for the atoms that has the form

Setla”, a, ", Y] = /0 dr [Za (h— - ,u) T)+ %UZaf(T)af(T)ai(T)ai(T)
_Ztm +¢ +th]w ] .

We define S%[a*, a] as Seg[a*, a,1*, 9] with ¢;; = 0. Furthermore, we define the average

(Ala*, a)o = / dla*]d[a] Ala*  a] exp{—ﬁsﬁ[a a]}

(1.0) 2. Show, with the above definitions, that up to quadratic order in the fields ¢ the

effective action for the non-condensed phase Se(? [*, 1] becomes

SE W, ¥l = 21h<(/ dTth ™) + i (7)a ()))>
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Hints: 1) For the non-condensed case (a;) = 0. 2) To calculate expectation values,

expand the exponential. To get the correct term for the effective action, re-exponentiate.

It turns out that one can actually calculate the above expectation values using pertur-
bation theory (you don’t have to do it!). Transforming the fields to Fourier space, we
finally obtain
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where g is the number of particles per site, ¢, = —2¢ ijl cos(k;l) with d the dimension-

ality of the lattice (usually 3) and [ the lattice spacing.

(1.0) 3. By performing the substitution iw, — w, and putting in the above expression
the term between square brackets equal to zero, you could in principle obtain the quasi-
particle/hole dispersions (don’t calculate it). Why is this the case? What are you putting
to zero?



It turns out that the dispersion for the density fluctuations, given by the difference

between the quasi-particle dispersion and the quasi-hole dispersion, is given by

fiwg — hwgn, = AEy = \/eﬁ + (49 + 2)Ue + U2

(1.0) 4. Take one particle per site, which means g equal to 1. Note that ¢ is positive.
For which k do we have a minimum of the above dispersion? Remember that the Mott-
insulator has a gapped dispersion (and precisely one particle per site). Is the system in
the Mott-insulator phase for very large and positive U? Can you understand the gapped
spectrum physically? Show that the transition to the gapless superfluid occurs when
U/Zt = 3+ 2v/2 ~ 5.8, where Z = 2d is the number of nearest neighbours.

(1.0) 5. Consider now a generalized Bose-Hubbard model, with anisotropic and complex

hopping coefficients,
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where A and B refer to a bipartite lattice, see Fig. (1).
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Figure 1: The bipartite lattice comprises sites labeled by 7 A” and ”B”. The grey rectangle
identifies a single plaquette. Single-particle spectrum for (a) § < 7/4, with the minimum

at the origin, and (b) € > 7/4, with minima at the Brillouin zone edges (£, £7).

The single-particle spectrum of this problem reads

1/2
Ey = *t|ex| = £2|c| [cos® (kT1) + cos® (k71) + 2cos (k1) cos (k71) cos (20)|

where k* = (k, + k,)/2 and [ is the lattice constant. The spectrum has two branches,
but since we are interested on bosons, we consider only the lowest one, which is shown
in Fig. 1(a) and (b). We observe that for # < /4 the spectrum has a minimum at k =
(kg, ky) = (0,0) = 0, whereas for § > 7/4 the minima are at k = (k;, k) = (7, £7) =7



(these four points are equivalent). The wave function describing the bosons is the same
in all lattice sites for # < m/4, whereas its angular phase o changes by 7/2 between
neighboring sites if # > 7 /4 (the wave function picks up a phase 27 while going around
a plaquette, i.e., vortices and anti-vortices set in). At @ = 7/4 the minima at k = 0 and
k = 7 have equal energy. What kind of phase transition are we describing at § = 7/4?
How should the thermodynamical potential for this transition look like? What can you

say about the coeficients of the Landau-free energy functional?



