WAT IS WISKUNDE EXAM B, 17-01-2011, ENGLISH

- Voor de Nederlandse tekst van dit tentamen zie ommezijde.
- Write the solution to each problem on a <u>separate sheet</u> of paper
- On each sheet of paper you hand in write your name and student number
- Each problem counts for 20 points, leading to a maximum of 100 points
- Do not provide just final answers. Prove and motivate your arguments!
- The use of computer, calculator, lecture notes, or books is not allowed. A personal A4 is allowed.

Problem A) Consider the real valued assignment $f(x) = \frac{x}{x-1}$ and let $A \subseteq \mathbb{R}$ be the largest subset of the real numbers on which the function is well-defined.

- (1) Find the set A and prove that the image $\{f(a) \mid a \in A\} = A$.
- (2) Prove that $f: A \to A$ is bijective and find its inverse.
- (3) Write f^n for the composition of f with itself n times. Give an explicit formula for $f^3(x)$.
- (4) Calculate $f^{1000}(0)$.

Problem B) (new sheet!)

- (1) State (without proof) the Cantor-Schroeder-Bernstein Theorem.
- (2) Let $S = [-1, 1] \times [-1, 1]$ and $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Prove that |S| = |C| (hint: think of these sets geometrically).
- (3) Prove that the set $X = \{A \subseteq \mathbb{N} \mid |A| < \omega\}$, that is the set of all finite subsets of \mathbb{N} , is countably infinite.

Problem C) (new sheet!)

- (1) Let d = gcd(173, 2011). Use the Euclidean Algorithm to find d and write d as $x \cdot 2011 + y \cdot 173$ where x and y are integers.
- (2) Let a, b be two positive natural numbers and let gcd(a, b) = c. Prove that $gcd(a^2, b) \le c^2$.

Problem D) (new sheet!)

- (1) Let (G, *, e) be a group. Prove that for every $g, h, k \in G$ holds that $(g * h * k)^{-1} = k^{-1} * h^{-1} * g^{-1}$.
- (2) Let $A = \{1, 2, 3\}$. For each element x in the group Symm(A), the group of bijections from A to A, find the least natural number n_x such that in Symm(A) holds $x * x * \cdots * x \ (n_x \text{ times})$ is the unit element.

Problem E) (new sheet!) For each of the following statements decide if it is true or false. Give a short argument to support your answer.

- (1) Let A be a set and $f: A \to A$ a function. If $f \circ f \circ f \circ f \circ f$ is invertible then f is invertible.
- (2) There exists a set X and a subset $Y \subseteq X$ such that $X \neq Y$ and |X| = |Y|.
- (3) For any natural numbers a, b holds that if $a \neq b$ then $gcd(a^b, b^a) = 1$.
- (4) Let (G, *, e) be a group. For any two elements $g, h \in G$ holds that $(g*h)^{-1} = g^{-1} * h^{-1}$.

WAT IS WISKUNDE TENTAMEN B, 17-01-2011, NEDERLANDS

- Please turn over for the English text of this exam.
- Schrijf de uitwerking van iedere opgave met een <u>apart vel</u> papier
- Schrijf op ieder vel paier dat je inlevert je naam en studentnummer
- Iedere opgave is 20 punten waard. Je kunt maximaal 100 puten halen.
- Geef niet alleen uitkomsten. Bewijs en motiveer je antwoorden!
- Het gebruik van een computer, rekenmachine, dictaat of boeken is niet toegestaan. Je mag een persoonlijk A4 gebruiken.

Opgave A) Beschouw het reëelwaardige voorschrift $f(x) = \frac{x}{x-1}$ en laat $A \subseteq \mathbb{R}$ de grootste deelverzameling van de reële getallen zijn zodat de functie goed gedefinieerd is

- (1) Bepaal de verzameling A en bewijs dat $\{f(a) \mid a \in A\} = A$.
- (2) Bewijs dat $f: A \to A$ bijectief is en bepaal de inverse.
- (3) Schrijf f^n voor de n-voudige samenstelling van f met zichzelf. Geef een expliciete formule voor $f^3(x)$.
- (4) Bereken $f^{1000}(0)$.

Opgave B) (nieuw vel!)

- (1) Formuleer (zonder bewijs) de stelling van Cantor-Schroeder-Bernstein.
- (2) Laat $S = [-1, 1] \times [-1, 1]$ en $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Bewijs dat |S| = |C| (hint: interpreteer deze verzamelingen meetkundig).
- (3) Bewijs dat de verzameling $X = \{A \subseteq \mathbb{N} \mid |A| < \omega\}$, de verzameling van alle eindige deelverzamelingen van \mathbb{N} , aftelbaar oneindig is.

Opgave C) $(\underline{\text{nieuw vel}}!)$

- (1) Laat d = ggd(173, 2011). Gebruik het algoritme van Euclides om d te bepalen en schrijf d als $x \cdot 2011 + y \cdot 173$ waarbij x en y gehele getallen zijn.
- (2) Laat a, b twee positieve natuurlijke getallen zijn, en laat ggd(a, b) = c. Bewijs dat $ggd(a^2, b) \le c^2$.

Opgave D) (nieuw vel!)

- (1) Laat (G, *, e) een groep zijn. Bewijs dat voor alle $g, h, k \in G$ geldt dat $(g * h * k)^{-1} = k^{-1} * h^{-1} * q^{-1}$.
- (2) Laat $A = \{1, 2, 3\}$. Bepaal voor ieder element x van de groep Symm(A), de groep van bijecties van A naar A, het kleinste natuurlijk getal n_x zodat in Symm(A) geldt dat $x * x * \cdots * x$ $(n_x$ keer) het eenheidselement is.

Opgave E) (<u>nieuw vel!</u>) Bepaal voor iedere van de volgende beweringen of hij juist of onjuist is. Geef een kort argument om je antwoord te ondersteunen.

- (1) Laat A een verzameling zijn en $f:A\to A$ een functie. Als $f\circ f\circ f\circ f\circ f$ inverteerbaar is, dan is f inverteerbaar.
- (2) Er bestaan een verzameling X en een deelverzameling $Y \subseteq X$ zodat $X \neq Y$ en |X| = |Y|.
- (3) Voor alle natuurlijke getallen a, b geldt dat als $a \neq b$ dan $ggd(a^b, b^a) = 1$.
- (4) Laat (G, *, e) een groep zijn. Voor ieder tweetal elementen $g, h \in G$ geldt dat $(g * h)^{-1} = g^{-1} * h^{-1}$.

SOLUTIONS

Problem A) Consider the real valued assignment $f(x) = \frac{x}{x-1}$ and let $A \subseteq \mathbb{R}$ be the largest subset of the real numbers on which the function is well-defined.

- (1) Find the set A and prove that the image $\{f(a) \mid a \in A\} = A$.
- (2) Prove that $f: A \to A$ is bijective and find its inverse.
- (3) Write f^n for the composition of f with itself n times. Give an explicit formula for $f^3(x)$.
- (4) Calculate $f^{1000}(0)$.

Solution

(1) The function is well defined unless x-1=0. Thus the domain of definition is $A=\{x\in\mathbb{R}\mid x\neq 1\}$. To show that the image of f is A as well we need to find for each $y\in A$ some $x\in A$ for which f(x)=y. Let $y\in A$ thus. We solve f(x)=y for x:

$$\frac{x}{x-1} = y$$

which implies: x = xy - y which leads to y = xy - x = x(y - 1) and finaly, since $y \neq 1$, $x = \frac{y}{y-1}$. Thus a solution exists and so the image is A.

(2) We prove that f is bijective by finding its inverse. In fact, in 1 above, we found that the inverse is $g(x) = \frac{x}{x-1}$. We verify that again by calculating

$$f(g(x)) = \frac{g(x)}{g(x) - 1} = \frac{\frac{x}{x - 1}}{\frac{x}{x - 1} - 1} = \frac{\frac{x}{x - 1}}{\frac{1}{x - 1}} = \frac{x}{x - 1} \cdot (x - 1) = x.$$

Note that it is clear that g(f(x)) = x since g = f.

(3) This can be done by direct calculation or, simpler, as follows (remembering that $f^{-1} = f = g$, we compute:

$$f^3(x) = f \circ f \circ f(x) = f \circ g \circ f(x) = (f \circ g)(f(x)) = f(x).$$

Thus the explicite formula is $f^3(x) = \frac{x}{x-1}$.

(4) Note that $f(0) = \frac{0}{0-1} = 0$. Thus 0 is a fixed point of f and so $f^n(0) = 0$ for all natural numbers f. The case in question is f = 1000. So: $f^{1000}(0) = 0$. (There are other ways one can solve this problem.)

Problem B) (new sheet!)

- (1) State (without proof) the Cantor-Schroeder-Bernstein Theorem.
- (2) Let $S = [-1, 1] \times [-1, 1]$ and $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Prove that |S| = |C| (hint: think of these sets geometrically).
- (3) Prove that the set $X = \{A \subseteq \mathbb{N} \mid |A| < \omega\}$, that is the set of all finite subsets of \mathbb{N} , is countably infinite.

Solution:

- (1) The theorem of Cantor-Schroeder-Bernstein states that given any two sets A and B if there is an injection $f:A\to B$ and an injection $g:B\to A$ then there exists a bijection $h:A\to B$.
- (2) According to the Cantor-Schroeder-Bernstein Theorem it is sufficient to find injections $f:C\to S$ and $g:S\to C$. Geometrically, it is clear that C (the circle of radius 1) is contained in S (the square with side equal to 1). So we define $f:C\to S$ by f(x,y)=(x,y). Let us verify that f indeed has S as codomain. Let $(x,y)\in C$, thus $x^2+y^2\leq 1$. We need to show that both $-1\leq x\leq 1$ and $-1\leq y\leq 1$. This is indeed the case since if, without loss of generality, |x|>1 then $x^2>1$ which would make $x^2+y^2\leq 1$ impossible (since $y^2\geq 0$). It is obvious that f is injective. To find $g:S\to C$ we need to shrink the square by a factor to get it to fit inside the circle. Let us choose a factor of $\alpha=\frac{1}{2}$. Now we define $g(x,y)=(\alpha x,\alpha y)$. We need to verify that indeed the codomain of g is C. So let $(x,y)\in S$ which means that $|x|\leq 1$ and $|y|\leq 1$. We calculate:

$$(\alpha x)^2 + (\alpha y)^2 = \alpha^2 (x^2 + y^2) = \alpha^2 (|x|^2 + |y|^2) \le \alpha^2 (1+1) = \frac{1}{2^2} \cdot 2 = \frac{1}{2} < 1$$

from which we conclude that indeed $g(x,y) \in C$. It is clear that g is injective and so we are done.

(3) There are at least two possibilities to solve this problem. We present both. The first uses that theorem that a countable union of countable sets is countable. So we present the set X as follows. Let $n \in \mathbb{N}$ (n = 0 is included). Define $X_n = \{A \subseteq \mathbb{N} \mid |A| = n\}$. It is clear that

$$X = \bigcup_{n \in \mathbb{N}} X_n$$

so, using the theorem stated, it is enough to show that each X_n is countable (it is obvious that X is infinite). Let n be fixed. We will find an injection $f: X_n \to X$ which then proves X_n is countable. Let $A \in X_n$ and write $A = \{a_1, \dots, a_n\}$ and moreover assume $a_i < a_{i+1}$ for each $1 \le i < n$. Then the function $f: X_n \to X$ defined by

$$f(A) = \sum_{i=1}^{n} a_i 10^i$$

is clearly injective and so we are done.

Another possibility for proving this result is by directly constructing an injection $X \to \mathbb{N}$. To achieve that write $\{p_i\}_{i \in \mathbb{N}}$ for the list of all primes numbers with not repetition there are infinitely many primes so this is feasible). Now construct $f: X \to \mathbb{N}$ on $A \in X$ as follows:

$$f(A) = \prod_{i \in A} p_i.$$

The Fundamental Theorem of Arithmetic then guarantees that f is injective and we are done.

Problem C) (new sheet!)

- (1) Let d = gcd(173, 2011). Use the Euclidean Algorithm to find d and write d as $x \cdot 2011 + y \cdot 173$ where x and y are integers.
- (2) Let a, b be two positive natural numbers and let gcd(a, b) = c. Prove that $gcd(a^2, b) \le c^2$.

Solution

- (1) This is completely straightforward following the algorithm in the book (of course this cannot be accepted as an answer in the test).
- (2) We use the cirterion of gcd(u, v) which states that it is the smallest positive linear combination of x and y. Since gcd(a, b) = c there exist $x, y \in \mathbb{Z}$ such that xa + by = c. Squaring both sides we obtain

$$c^2 = x^2 a^2 + b^2 y^2 + 2abxy$$

rearranging the right hand sinde yields:

$$x^2a^2 + (bt^2 + 2axy)b$$

and so c^2 is a linear combination of a^2 and b and so, by the criterion above, $gcd(a^2,b) \leq c^2$ as desired.

Problem D) (new sheet!)

- (1) Let (G, *, e) be a group. Prove that for every $g, h, k \in G$ holds that $(g * h * k)^{-1} = k^{-1} * h^{-1} * g^{-1}$.
- (2) Let $A = \{1, 2, 3\}$. For each element x in the group Symm(A), the group of bijections from A to A, find the least natural number n_x such that in Symm(A) holds $x * x * \cdots * x \ (n_x \text{ times})$ is the unit element.

Solution

(1) To establish the equality it suffices to show that $(g*h*k)*(k^{-1}*h^{-1}g^{-1}) = e$ and that $(k^{-1}*h^{-1}g^{-1})*(g*h*k) = e$. For the first equality, using the axioms of a group:

$$(g*h*k)*(k^{-1}*h^{-1}g^{-1}) = g*h*k*k^{-1}*h^{-1}*g^{-1} = g*h*h^{-1}*g^{-1} = g*g^{-1} = e.$$

A similar calculation shows the other equality and we are done.

(2) This is a straightforward computation (an answer in the exam will have to include the calculations). The results are that one element has $n_x = 1$, three have $n_x = 2$ and 2 have $n_x = 3$.

Problem E) (new sheet!) For each of the following statements decide if it is true or false. Give a short argument to support your answer.

- (1) Let A be a set and $f: A \to A$ a function. If $f \circ f \circ f \circ f \circ f$ is invertible then f is invertible.
- (2) There exists a set X and a subset $Y \subseteq X$ such that $X \neq Y$ and |X| = |Y|.
- (3) For any natural numbers a, b holds that if $a \neq b$ then $gcd(a^b, b^a) = 1$.
- (4) Let (G, *, e) be a group. For any two elements $g, h \in G$ holds that $(g*h)^{-1} = g^{-1} * h^{-1}$.

Solution

- (1) True. We write $g = f \circ f \circ f \circ f \circ f$. Since g is invertible it is both injective and surjective. We show that this implies f is injective and surjective as well and thus is bijective. Indeed, if f is not injective then f(a) = f(b) for some $a \neq b$. But then clearly g(a) = g(b) which is not possible. So f is injective. Similarly, if f is not surjective then g can't be surjective either (if f misses a value then repeated it 5 times won't be able to hit that element either (a more accurate proof can be given of course)).
- (2) True. Let $X = \mathbb{N}$ and $Y = \{2n \mid n \in \mathbb{N}\}$. Clearly $X \neq Y$ and the bijection $f: X \to Y$ given by f(n) = 2n is clearly a bijection so that |X| = |Y|.
- (3) False. Let a = 6 and b = 2. Then $a \neq b$ but $gcd(a^b, b^a) = gcd(36, 64) = 4 \neq 1$.
- (4) False. Since $(g * h)^{-1} = h^{-1} * g^{-1}$ it follows that if $(g * h)^{-1} = g^{-1} * h^{-1}$ then $h^{-1}g^{-1} = g^{-1}h^{-1}$. Since not every group is commutative this equality does not hold in general and guids us to find a counter example, namely in any non-abelian group. Let $G = Sym(\{1,2,3\})$ by the symmetric group. Two non-commuting elements are f and g where f(1) = 1, f(2) = 3, and f(3) = 2 while g(1) = 2, g(2) = 3, and g(3) = 1. A straightforward computation now shows $(f * g)^{-1} \neq f^{-1} * g^{-1}$.