Exam Analyse in Meer Variabelen 2018-06-26, 9:00-13:00

Solution 1

(a)

(b)

©

Clearly, ® is C~ and injective. By a simple calculation we have

[ cos@ —rsing
be(r,gf)—< sing@  rcosQ >

It now follows that det®(r,) = r # 0 for all all (r,¢) € U. By the inverse
function theorem it follows that & is a diffeomorphism from U onto an open
subset V of R?.

We put /* = fo®. By the chain rule it follows that for (r, ) € U we have

D(f*)(r,@) = (D1f(®(r,9)) | D2f (P(r,9))) DP(r, )

hence
(DU ) | D21(@00) = (57 10) | 55(7)00) ) DR )

Now

D(D(r(p)_lzl reos @ rsin @ .
’ r\ —sin@ cos@

91 a7,
Df(®(rg)) = |sing S+ Leoso 2| () (e
which may be rewritten as the required equalities.
Noting that D;f : V — R is C' and applying (b) to D ;f, we obtain
([DIf1e®@)(r9)) = [Di(D1f)-@|(r,0)
[ J 1. d ]
= _cos q)j —sin (p%_ Dy fo®|(r,@)

[ 9 1. 91,
= _cosq)j—;sm(p%_ f(ro)

[ d 1. 9] d .
= cos(pg—;sm(P% [COS(Par] (f)(r.e)
: % 1 F
— 2 Zsin? o— *
= |cosegptsin "’ar] () e)

Adding up these identities, we find the desired identity.



Solution 2

(a) By the characterization of submanifolds in the book, there exists an open neigh-
borhood Uy > 1% in R” and a submersion f: U r—R"P=R9suchthat UsNM =
F710). Since x° € UsNnMNU, NN, we have f(x°) =0 and g(x°) = 0.
Likewise, we find a submersion g : U, — R? such that U, \N = §~1(0). Put U =
UrNUyg, f = flv and g = g|y. Then f and g are submersions on U. Furthermore,

i oy=unf0)=unUuNnM=UnNM.
Likewise g~ 1(0) = UNN.

(b) For x € U we have

o =( ity )

From this it is clear that D(f,g)(x) : R" — RP*4 is a surjective linear map. By
the rank theorem from linear algebra it follows that D(f, g)(x) € Aut(R").

(c) By the inverse function theorem there exists an open neighborhood Uy > x° in
R" such that F maps Uy diffeomorphically onto an open subset V containing
F(x") = 0. The inverse @ is a diffeomorphism from V onto Uy. Furthermore, let
x € Up. Thenx € (VN (R? x {0})) if and only if F(x) € VN (R? x {0}), which
in turn is equivalent to F(x) € V and f(x) =0 hence tox € (V) andx € UNM,
which is equivalent to x € ®(V) N M. The second assertion follows in a similar
fashion.

(d) Let & =F(V), then forx € & we have x e MNN <= (f(x) =0 and g(x) =
0) < F(x) € (R? x {0})N ({0} xRY) = {0} += x € ®({0}) = {x°}. This
establishes the assertion.

(e) The intersection M NN is compact. For every a € M NN there exists an open
neighborhood U, > a in R” such that U, "M NN = {a}. By compactness, there
exist finitely many ay,...,ay € M NN such that the sets Uq; cover MNN. Since
Uy, "M NN = {a;}, it follows that MNN = {ay,...,an}.

Solution 3

(a) From the assumption it follows that 0 < f < 1. Now B is Jordan measurable,
hence dB is negligable, and we find

0 §/Bf(x) dxg/Bf(x) de/BlaB(x) dx=0.

This implies the assertion.

(b) We observe that f = 1g — 1p\g. The first term is integrable with integral equal
to vol(B); the second is also integrable with zero integral in view of (a). This
implies the result.



(©

(d)

(e)

Fix such a; < u < b; and put g(v) = f(u,v). Then the function g : , — R
is bounded. Furthermore, if ay < v < by, then (u,v) € inw(B) hence g(v) =
f(u,v) = 1. We see that g equals 1 on (az,b;). This implies that g is Riemann
integrable over I, with integral equal to b, — a,. By definition of Riemann inte-
grability, it follows that lower and upper integral of g over I, are equal to each
other.

There exists a set T C [a2,by] which is not Jordan-measurable. E.g., the set
T := [az,b2] N Q has this property. We now take S = inw(B) U {b;} x T. Then
f(by, ) equals 17 and is therefore not Riemann integrable. Hence, (c) does not
hold for u = b;.

We put F () for the inner upper integral, and F (u). As we argued in (c) we have
F(u) = F(u) = by — ap for a; < u < by. This means that the functions F and F
are both integrable over [a;,b;], with integral (b; —a;)(b, —a) = vol(B). This
implies the two equalities.

Solution 4

(a)

(b)

(©)

The sets K- are closed and bounded in R? hence compact. The boundary of K-
is a finite union of compact subsets of C'-submanifolds of dimension 1, hence
Jordan negligable. It follows that K= are Jordan measurable.

We will show this for K. The other case is treated in a similar fashion. Since
K" is compact Jordan measurable, and f continuous on K", it follows that f
is Riemann-integrable over K. Hence 1 k;+J 18 a Riemann integrable function
with compact support.

We note that K is a compact subset of the open set R?\ L, where L = (—o0,0] x
{0}. LetU = (0,%0) x (—7, ) and define @ : U — R? by ®(r, @) = r(cos @,sin ).
Then @ is bijective from U onto R?\ L, and

DD(r, ) = ( cosQ —rsin@ )

sing rcos@
Now det D®(r, ) = r > 0 for (r, @) € U and we see that ® is a C'-diffeomorphism

from U onto R?\ L. We note that ! (K;) = [1,1] x [-7/2,7/2]. By applica-
tion of the substitution of variables theorem, we have

/K)Tf(x)dx = /Rz\LlKrT(x)f(x)dx
- /U(IK,foq)(y))’detD(I)(y)’a’y
- /_7:, /Ow L (D(r,0)) f(R(r,0)) r drd

/2 ol 1 1
= / l-—-rdrdp=mn(1—-).
—-n/2J1/n T n

We define K, = K, UK,'. Then K, is a compact Jordan measurable set. Since
K, and K, overlap on part of their boundaries, hence a negligable set, it follows



that 1g, — 1x+ — 15— has Riemann integral zero, so that

/Rz\{o}f(x) dx:/ﬁf+/]<nf:2n(1—i).

Taking the limit for n — o, we see that 15 f is absolutely Riemann integrable
over R?\ {0} with integral 27z. As dD is Jordan negligable and compact, the
same holds for 1p f. This easily implies that f is absolutely Riemann integrable
over D\ {0} with integral

/ x|~ dx = 27,
D\{0}



