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Solution 1

(a)

(b)

(©

Clearly, ® is C~ and injective. By a simple calculation we have

t ot
D@(t7(p):<ecos(p e'sin @ >

e'sing e cos

It now follows that det(D®(z, @) = e* # 0 for all (¢, @) € U. By injectivity of ® it now follows
from the inverse function theorem that ® is a diffeomorphism from U onto an open subset V of
R2.

We put f* = fo®. By the chain rule it follows that for (z,¢) € U we have
D(f*)(ta(p) = (D]f(q)([,([))) ‘ sz(q)(t,([)))) Dq)(t7(p)

hence

(DuF(@(0.0)) | D2 (@(1.90)) = (5:07)0.0) | 31(7)0.0) ) DR )

Now

DCI>(t,(p)1:e’< cosQ sing >

—sing cos¢@

This implies
f(@(t,9)) N 78 —e s i (), )
Dif(®(t,9)) = |e COS(P8t e sm(pa ,0),
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which may be rewritten as the required equalities.
Noting that D f : V — R is C! and applying (b) to D; f, we obtain

([DIf]o®)(1.9)) = [Di(D1f)-P|(t,9)
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Adding up these identities, we find the desired identity.
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Solution 2

(a)

(b)

(©

Let ¢ be such a differentiable curve then ¢/(¢) € T, (M by definition of the tangent space. By
the chain rule we now have

© Fe(e)) = DF(e()e (1) =0,

forallz € (—1,1). Since foc: (—1,1) — R is differentiable, it follows that f(c(t)) = f(c(0))
forall -1 <t < 1.

Since M is a submanifold, there exists an open neighborhood W of x* in R” and a dif-
feomorphism @ from W onto an open neighborhood V? of 0 in R”" with ®(x°) = 0 and
dWONM) =Vvon (R*! x {0}). We may fix § > 0 such that V := (—§,8)" is contained
in V0. We note that V N@(WONM) = (—5,8)" ! x {0}. Lety € VNP(W°NM). Then y, =0
andd : t — ty, (—1,1) — V is a differentiable curve in V which is contained in ®(W° N M).

By (a) it follows that f is constant along &' od. Hence fo®~! is constant on (—1,1)y. Since
this is true for all y, the function fo®~! is constant on V N ®(W° N M). This implies that f is
constant on @' (V)NWO'NM =d~1(V)nM,

Put W = ®~!(V), then we see that W is an open neighborhood of x” in R" and f is constant on
WnNM.

For every x € M there exists an open neighborhood W, of x in R” such that f is constant on
W, N M. By compactness there exists a finite collection of points xy,...,xy € M such that M C
Uj(Wy, N M). Tt follows that f(M) C U;f(W,, NM) C {f(x1),...,f(xny)}, which is finite.

Solution 3

(a)

(b)

‘We calculate
D\¥(p,a) = ((1+ 3cosa)7'(¢),0)T

and
D>¥(¢,a)(—sina 7(¢@),cosa)”

Accordingly,

cosa(1+ 1 cosa)7)(9)
D1¥(¢,a) x D¥(¢,0) = | —cosa(l+1cosa)T](9) (%)
(1+ Jcosa)sino

The length of this vector is given by
1
ID1¥ (@, ) x D¥(@,a)|| =2(1+ 5 cos o).

If follows that this length is nowhere zero. Hence DW¥(¢@, &) is injective for all @, o and we
conclude that D¥(¢, @) is an immersion. The image of W is the image of ¥([0,27x] x [0,27])
which is compact, since [0,27] x [0,27] is compact and ¥ is continuous.

Observe that @ — (7(¢@),0) parametrizes a circle C in x3 = 0 of center 0 and radius 2. Next
write

Y(p,a)=(1(¢),0)+ (cosx T(Z(P) ,sina)

to see that 7' consists of the points in R? of distance 1 to the circle C.
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(d)

(e

Since W is injective on [0,27) x [0,27) with image T, the area is calculated by

2T 2;
Area(T) — /0 /0 ID\¥(9, @) x D2¥(0, )| dodo

27 1
= 2n | 2(1+=cosa)da=8n’.
0 2
The boundary is given by dM = C; UCy, where C; = ¥({0} x [0,27]) and C, = ¥({n} x
[0,27]) are two circles of radius 1 in the plane x, = 0. The centers of these circles are (2,0,0)
and (—2,0,0), respectively.

By an easy calculation it follows that curl(&) = 2v. We equip M with the orientation determined
by the normal (*). The associated unit normal is denoted by n. It follows from Stokes’ theorem
that the flux of v through M relative to this choice of normal is given by

/Mv(x) ‘n(x) dyx = ;/aMf(x) -e(x) dyx.

Here e(x) denotes the positively oriented unit tangent vector to dM at the point x € dM. We will
proceed by computing the right-hand side, using that dM is the disjoint union the two circles
Cy,C.

The circle C) is parametrized by 7, : @ — W(0, ) = (2+cos &, 0, sin &) with 0 < o¢ < 27. Thus,
7 (a) = Dr®(0, ) = (—sinet,0,cos ), which has unit length, so that e(y; (o)) = £y (o).
Now —D;®(0, @) is tangent to M and normal to C) in the outward direction. Since the ba-
sis —D1®(0, ), D,®(0, ), n(P(0, )) is negatively oriented, it follows that the minus sign
should be taken in . Hence,

% Clé(x)-e(x)dpc:—; Omf(?’l(a))-}’{(a) da:;/02n(1+2cosoc)da:7t.

On the other hand, C, is parametrized by p» : & — ¥(7, ) = (—2 —cos,0,sina) with 0 <
a < 2m. Again e(p (o)) = £9 (). This time, D'¥(0, o) is tangent to M and outward normal
to C; so that the plus sign should be taken. Hence,

2n 21
% Czé(x)-e(x) dlx:;/o E(p(a)) (o) da:;/o (1+2cosa) da = .

We conclude that the flux of v through M relative to n equals & + 7 = 27.

Remark. The following solution is also allowed. By a second application of Stokes theorem,
this time to the disks D and D, with boundaries C; and C;, it follows that

1
2 [ E0-etdie= [ v oni(x) dax.

j
Here the normal should be taken in accordance with the orientation of C;. In both cases, n; =
(0,1,0) = v and we see that

./Djv(x) ‘nj(x) dox = /D_,- dyx = Areay(D;) = 7.

Thus, again, the flux is seen to be equal to 7+ 7 = 2.
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(a)

(b)

(©

Write B = [aj,b1] X - - - X [an, by). Since the function ¢ is continuous and non-negative it follows
by application of Thm 6.4.5 in the book that f is integrable over G and that

/Gf(z)dz = /:1 ~-/ajn /Oq)mf(x,s) dsdx, - --dx;
= /B/O(p(X) f(x,s) dsdx

= [ [ rownewaax

in the last step we applied the substitution s = ¢ (x)¢ to the inner integral. In the above, it is OK
if the first step of the derivation is taken for granted.

Since ¢ is everywhere on U strictly positive, it readily follows that the defined map @ is injec-
tive. By substitution of variables, it is C ! Furthermore, for 1 < j < n we have

Dj®(x,t) = (e}, D;p(x))"

and
Dn-‘rlq)(-xat) = (07 (P(x))T
It follows that
DD(x,1) = ( ro )
’ Do(x)t ¢(x) )

Hence, det D®(x,1) = ¢(x) > 0 for (x,7) € U and by the inverse function theorem it follows
that @ is a diffeomorphism as stated.

It is readily verified that G = ®(B x I). Outside G we may extend f by zero. Then f is a
compactly supported Riemann integrable function on ®(U x R).

By substitution of variables we have that

/Gf(Z) dz = /pwa)f(Z) dz

= f(@(y)) |detDD(y)|dy
UxR

= [ F(@0)) [detD@(y)ldy
Bx[0,1]
= //]f(dD(x,t)) | det DP(x,1)|dtdx
BJO
1
= [ | 0@ pwdx
BJO



