
Retake Analyse in Meer Variabelen 2018-07-17, 9:00–12:00

Solution 1
(a) Clearly, Φ is C∞ and injective. By a simple calculation we have

DΦ(t,ϕ) =
(

et cosϕ −et sinϕ

et sinϕ et cosϕ

)
It now follows that det(DΦ(t,ϕ)) = e2t 6= 0 for all (t,ϕ)∈U. By injectivity of Φ it now follows
from the inverse function theorem that Φ is a diffeomorphism from U onto an open subset V of
R2.

(b) We put f ∗ = f ◦Φ. By the chain rule it follows that for (t,ϕ) ∈U we have

D( f ∗)(t,ϕ) = (D1 f (Φ(t,ϕ)) | D2 f (Φ(t,ϕ))) DΦ(t,ϕ)

hence

(D1 f (Φ(t,ϕ)) | D2 f (Φ(t,ϕ))) =
(

∂

∂ t
( f ∗)(t,ϕ) | ∂

∂ϕ
( f ∗)(t,ϕ)

)
DΦ(t,ϕ)−1.

Now

DΦ(t,ϕ)−1 = e−t
(

cosϕ sinϕ

−sinϕ cosϕ

)
.

This implies

D1 f (Φ(t,ϕ)) =

[
e−t cosϕ

∂

∂ t
− e−t sinϕ

∂

∂ϕ

]
( f ∗)(t,ϕ),

D2 f (Φ(t,ϕ)) =

[
e−t sinϕ

∂

∂ t
+ e−t cosϕ

∂

∂ϕ

]
( f ∗)(t,ϕ),

which may be rewritten as the required equalities.

(c) Noting that D1 f : V → R is C1 and applying (b) to D1 f , we obtain

([D2
1 f ] ◦Φ)(t,ϕ)) = [D1(D1 f ) ◦Φ](t,ϕ)

=

[
e−t cosϕ

∂

∂ t
− e−t sinϕ

∂

∂ϕ

]
[D1 f ◦Φ](t,ϕ)

=

[
e−t cosϕ

∂

∂ t
− e−t sinϕ

∂

∂ϕ

]2

f ∗(t,ϕ)

=

[
e−t cosϕ

∂

∂ t
− e−t sinϕ

∂

∂ϕ

][
−e−t sinϕ

∂

∂ϕ

]
( f ∗)(t,ϕ)

=

[
2e−2t cosϕ sinϕ

∂

∂ϕ
+ e−2t sin2

ϕ
∂ 2

∂ϕ2

]
( f ∗)(t,ϕ)

Likewise,

([D2
2 f ] ◦Φ)(r,ϕ) =

[
−2e−2t sinϕ cosϕ

∂

∂ϕ
+ e−2t cos2

ϕ
∂ 2

∂ϕ2

]
( f ∗)(t,ϕ)

Adding up these identities, we find the desired identity.
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Solution 2
(a) Let c be such a differentiable curve then c′(t) ∈ Tc(t)M by definition of the tangent space. By

the chain rule we now have
d
dt

f (c(t)) = D f (c(t))c′(t) = 0,

for all t ∈ (−1,1). Since f ◦c : (−1,1)→ R is differentiable, it follows that f (c(t)) = f (c(0))
for all −1 < t < 1.

(b) Since M is a submanifold, there exists an open neighborhood W 0 of x0 in Rn and a dif-
feomorphism Φ from W 0 onto an open neighborhood V 0 of 0 in Rn with Φ(x0) = 0 and
Φ(W 0 ∩M) = V 0 ∩ (Rn−1 ×{0}). We may fix δ > 0 such that V := (−δ ,δ )n is contained
in V 0. We note that V ∩Φ(W 0∩M) = (−δ ,δ )n−1×{0}. Let y ∈V ∩Φ(W 0∩M). Then yn = 0
and d : t 7→ ty, (−1,1)→V is a differentiable curve in V which is contained in Φ(W 0∩M).

By (a) it follows that f is constant along Φ−1 ◦d. Hence f ◦Φ−1 is constant on (−1,1)y. Since
this is true for all y, the function f ◦Φ−1 is constant on V ∩Φ(W 0∩M). This implies that f is
constant on Φ−1(V )∩W 0∩M = Φ−1(V )∩M.

Put W = Φ−1(V ), then we see that W is an open neighborhood of x0 in Rn and f is constant on
W ∩M.

(c) For every x ∈ M there exists an open neighborhood Wx of x in Rn such that f is constant on
Wx∩M. By compactness there exists a finite collection of points x1, . . . ,xN ∈M such that M ⊂
∪ j(Wx j ∩M). It follows that f (M)⊂ ∪ j f (Wx j ∩M)⊂ { f (x1), . . . , f (xN)}, which is finite.

Solution 3
(a) We calculate

D1Ψ(ϕ,α) = ((1+ 1
2 cosα)τ ′(ϕ),0)T

and
D2Ψ(ϕ,α)(−sinα τ(ϕ),cosα)T

Accordingly,

D1Ψ(ϕ,α)×D2Ψ(ϕ,α) =

 cosα(1+ 1
2 cosα)τ ′2(ϕ)

−cosα(1+ 1
2 cosα)τ ′1(ϕ)

(1+ 1
2 cosα)sinα

 (∗)

The length of this vector is given by

‖D1Ψ(ϕ,α)×D2Ψ(ϕ,α)‖= 2(1+
1
2

cosα).

If follows that this length is nowhere zero. Hence DΨ(ϕ,α) is injective for all ϕ,α and we
conclude that DΨ(ϕ,α) is an immersion. The image of Ψ is the image of Ψ([0,2π]× [0,2π])
which is compact, since [0,2π]× [0,2π] is compact and Ψ is continuous.

(b) Observe that ϕ 7→ (τ(ϕ),0) parametrizes a circle C in x3 = 0 of center 0 and radius 2. Next
write

Ψ(ϕ,α) = (τ(ϕ),0)+(cosα
τ(ϕ)

2
,sinα)

to see that T consists of the points in R3 of distance 1 to the circle C.
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(c) Since Ψ is injective on [0,2π)× [0,2π) with image T, the area is calculated by

Area2(T ) =
∫ 2π

0

∫ 2π

0
‖D1Ψ(ϕ,α)×D2Ψ(ϕ,α)‖dϕdα

= 2π

∫ 2π

0
2(1+

1
2

cosα) dα = 8π
2.

(d) The boundary is given by ∂M = C1 ∪C2, where C1 = Ψ({0}× [0,2π]) and C2 = Ψ({π}×
[0,2π]) are two circles of radius 1 in the plane x2 = 0. The centers of these circles are (2,0,0)
and (−2,0,0), respectively.

(e) By an easy calculation it follows that curl(ξ ) = 2v. We equip M with the orientation determined
by the normal (*). The associated unit normal is denoted by n. It follows from Stokes’ theorem
that the flux of v through M relative to this choice of normal is given by∫

M
v(x) ·n(x) d2x =

1
2

∫
∂M

ξ (x) · e(x) d1x.

Here e(x) denotes the positively oriented unit tangent vector to ∂M at the point x∈ ∂M. We will
proceed by computing the right-hand side, using that ∂M is the disjoint union the two circles
C1,C2.

The circle C1 is parametrized by γ1 : α 7→Ψ(0,α) = (2+cosα,0,sinα) with 0≤α ≤ 2π. Thus,
γ ′1(α) = D2Φ(0,α) = (−sinα,0,cosα), which has unit length, so that e(γ1(α)) = ±γ ′1(α).
Now −D1Φ(0,α) is tangent to M and normal to C1 in the outward direction. Since the ba-
sis −D1Φ(0,α), D2Φ(0,α), n(Φ(0,α)) is negatively oriented, it follows that the minus sign
should be taken in ±. Hence,

1
2

∫
C1

ξ (x) · e(x) d1x =−1
2

∫ 2π

0
ξ (γ1(α)) · γ ′1(α) dα =

1
2

∫ 2π

0
(1+2cosα) dα = π.

On the other hand, C2 is parametrized by γ2 : α 7→ Ψ(π,α) = (−2− cosα,0,sinα) with 0 ≤
α ≤ 2π. Again e(γ2(α)) =±γ ′2(α). This time, D1Ψ(0,α) is tangent to M and outward normal
to C2 so that the plus sign should be taken. Hence,

1
2

∫
C2

ξ (x) · e(x) d1x =
1
2

∫ 2π

0
ξ (γ2(α)) · γ ′2(α) dα =

1
2

∫ 2π

0
(1+2cosα) dα = π.

We conclude that the flux of v through M relative to n equals π +π = 2π.

Remark. The following solution is also allowed. By a second application of Stokes theorem,
this time to the disks D1 and D2 with boundaries C1 and C2, it follows that

1
2

∫
C j

ξ (x) · e(x) d1x =
∫

D j

v(x) ·n j(x) d2x.

Here the normal should be taken in accordance with the orientation of C j. In both cases, n j =
(0,1,0) = v and we see that∫

D j

v(x) ·n j(x) d2x =
∫

D j

d2x = Area2(D j) = π.

Thus, again, the flux is seen to be equal to π +π = 2π.
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Solution 4
(a) Write B = [a1,b1]×·· ·× [an,bn]. Since the function ϕ is continuous and non-negative it follows

by application of Thm 6.4.5 in the book that f is integrable over G and that∫
G

f (z)dz =
∫ b1

a1

· · ·
∫ bn

an

∫
ϕ(x)

0
f (x,s) dsdxn · · ·dx1

=
∫

B

∫
ϕ(x)

0
f (x,s) dsdx

=
∫

B

∫ 1

0
f (x,ϕ(x)t)ϕ(x)dt dx;

in the last step we applied the substitution s = ϕ(x)t to the inner integral. In the above, it is OK
if the first step of the derivation is taken for granted.

(b) Since ϕ is everywhere on U strictly positive, it readily follows that the defined map Φ is injec-
tive. By substitution of variables, it is C1. Furthermore, for 1≤ j ≤ n we have

D jΦ(x, t) = (e j,D jϕ(x)t)T

and
Dn+1Φ(x, t) = (0,ϕ(x))T.

It follows that

DΦ(x, t) =
(

I 0
Dϕ(x)t ϕ(x)

)
.

Hence, det DΦ(x, t) = ϕ(x) > 0 for (x, t) ∈U and by the inverse function theorem it follows
that Φ is a diffeomorphism as stated.

(c) It is readily verified that G = Φ(B× I). Outside G we may extend f by zero. Then f is a
compactly supported Riemann integrable function on Φ(U×R).
By substitution of variables we have that∫

G
f (z) dz =

∫
Φ(U×R)

f (z) dz

=
∫

U×R
f (Φ(y)) |detDΦ(y)|dy

=
∫

B×[0,1]
f (Φ(y)) |detDΦ(y)|dy

=
∫

B

∫ 1

0
f (Φ(x, t)) |detDΦ(x, t)|dtdx

=
∫

B

∫ 1

0
f (x,ϕ(x)t) ϕ(x)dx.
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