Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{TBC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

Solution of Exercise 0.1

- (i) $x \in V$ implies $0 \le x_1^2 + x_2^2 = (1 x_3)x_3^2$, therefore $0 \le 1 x_3$, that is, $x_3 \le 1$.
- (ii) If $x_3 = 1 s^2$, then $1 x_3 = s^2$. Accordingly, for $x \in V$,

$$x_1^2 + x_2^2 = (1 - x_3)x_3^2 = (s(1 - s^2))^2$$
, so $(x_1, x_2) = s(1 - s^2)(\cos t, \sin t)$,

for suitable $t \in \mathbf{R}$, on account of the parametrization of a circle by trigonometric functions. Thus we obtain $V \subset im(\phi)$. Conversely, for every $x \in im(\phi)$,

$$x_1^2 + x_2^2 = (s(1-s^2))^2$$
 and $(1-x_3)x_3^2 = s^2(1-s^2)^2$, that is $g(x) = 0$

(iii) Suppose, for $h \in \mathbf{R}^2$,

$$D\phi(s,t)h = \begin{pmatrix} (1-3s^2)\cos t & -s(1-s^2)\sin t \\ (1-3s^2)\sin t & s(1-s^2)\cos t \\ -2s & 0 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \star \\ \star \\ -2sh_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

If $s \neq 0$, it follows that $h_1 = 0$. The two top equations above then give

$$h_2 s(1-s^2) \sin t = h_2 s(1-s^2) \cos t = 0$$
, so $s(1-s^2)h_2 = 0$.

Accordingly, if $s \notin \{-1, 0, 1\}$, then $h_2 = 0$ too; and therefore ϕ is immersive in this case. On the other hand,

$$D\phi(\pm 1, t) = -2\begin{pmatrix} \cos t & 0\\ \sin t & 0\\ \pm 1 & 0 \end{pmatrix}, \qquad D\phi(0, t) = \begin{pmatrix} \cos t & 0\\ \sin t & 0\\ 0 & 0 \end{pmatrix}$$

which shows that all three of these mappings in $\text{Lin}(\mathbf{R}^2, \mathbf{R}^3)$ have a one-dimensional kernel. It is direct from the definition that $\phi(\pm 1, t) = 0$ and $\phi(0, t) = n$, for all $t \in \mathbf{R}$.

(iv) We have, for $x \in V$,

$$Dg(x) = (2x_1, 2x_2, -2x_3 + 3x_3^2) \in Lin(\mathbf{R}^3, \mathbf{R})$$

This mapping fails to be surjective only if all its entries equal 0, which is the case only if x = 0 (the solution with $x_3 = \frac{2}{3}$ does not belong to *V*). Hence, *g* is submersive at all points of $V \setminus \{0\}$; and on the strength of the Submersion Theorem we now obtain that *V* is a C^{∞} manifold in \mathbb{R}^3 of dimension 2 at all of its points, with the possible exception of the point 0.

Solution of Exercise 0.2

- (i) $x^2 + 2y_1x + y_2 = (x x_1)(x x_2) = x^2 (x_1 + x_2)x + x_1x_2$ implies $y_1 = -\frac{1}{2}(x_1 + x_2)$ and $y_2 = x_1x_2$.
- (ii) The coefficients of $\Phi(x)$ are symmetric in x_1 and x_2 . Horizontal lines are of the form $\{x \in \mathbf{R}^2 \mid x_2 = \text{constant}\}$.
- (iii) Suppose $y = \Phi(x)$, that is, $2y_1 = -x_1 x_2$ and $y_2 = x_1x_2$. Then

$$2x_2y_1 = -x_1x_2 - x_2^2 = -y_2 - x_2^2$$
, so $p(x_2, y) = 0$, that is $y_2 = -2x_2y_1 - x_2^2$;

and this shows that y belongs to the straight line $L(x_2)$ in \mathbb{R}^2 of slope $-2x_2$.

(iv) We have

$$D\Phi(x) = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ x_2 & x_1 \end{pmatrix}, \quad \det D\Phi(x) = -\frac{1}{2}(x_1 - x_2) = 0 \implies x_1 = x_2.$$

Hence $S = \{ (x_2, x_2) \in \mathbb{R}^2 | x_2 \in \mathbb{R} \}$, the diagonal in \mathbb{R}^2 . Now $(y_1, y_2) = \Phi(x_2, x_2) = (-x_2, x_2^2)$ satisfies $y_1^2 = x_2^2 = y_2$, which implies

$$P = \Phi(S) \subset \{ y \in \mathbf{R}^2 \mid y_1^2 - y_2 = 0 \} =: \widetilde{P}.$$

Conversely, if $y_1^2 = y_2$, then we have $y_2 \ge 0$; hence there exists $x_2 \in \mathbf{R}$ satisfying $y_2 = x_2^2$. Then $y_1^2 = x_2^2$, having a solution $y_1 = -x_2$, that is, $y = \Phi(x_2, x_2)$. It follows that $\widetilde{P} \subset P$ and therefore $P = \widetilde{P}$.

- (v) Indeed, given $y \in V$, the system of equations $x_1 + x_2 = -2y_1$ and $x_1x_2 = y_2$ for $x \in \mathbb{R}^2$ is equivalent to the system $x_1^2 + 2y_1x_1 + y_2 = 0$ and $x_2 = -x_1 - 2y_1$. The latter system has a solution $x \in \mathbb{R}^2 \setminus S$, because $y \in V$ represents the well-known discriminant criterion for p(X, y)having two distinct real roots. Hence $y = \Phi(x)$, and therefore $y \in L(x_1) \cap L(x_2)$ with $x_1 \neq x_2$.
- (vi) Consider $y \in L(x_2) \cap P$. According to part (iv) the condition $y \in P$ implies the existence of $\widetilde{x}_2 \in \mathbf{R}$ such that $y = \Phi(\widetilde{x}_2, \widetilde{x}_2)$. Furthermore, the condition $y \in L(x_2)$ now gives

$$0 = x_2^2 - 2x_2\tilde{x}_2 + \tilde{x}_2^2 = (x_2 - \tilde{x}_2)^2, \quad \text{so} \quad x_2 = \tilde{x}_2, \quad \text{hence} \quad y = \Phi(x_2, x_2).$$

The tangent line of *P* at $\Phi(x_2, x_2)$ is the set of $y \in \mathbf{R}^2$ satisfying

$$(2y_1, -1)\Big|_{y=(-x_2, x_2^2)} \Big(\begin{array}{c} y_1 \\ y_2 \end{array} \Big) = -(2x_2y_1 + y_2) = 0.$$

As a consequence, the geometric tangent line of *P* at $\Phi(x_2, x_2)$ equals { $y \in \mathbf{R}^2 | 2x_2y_1 + y_2 = c$ } where $c \in \mathbf{R}$ is determined by $c = -2x_2^2 + x_2^2 = -x_2^2$; in other words, the geometric tangent line equals $L(x_2)$.

(vii) Obvious.