Group theory – Exam

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are **not** allowed to consult any text book, class notes, colleagues, calculators, computers etc.
- 5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
- 1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
 - a) $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2$, $\mathbb{Z}_9 \times \mathbb{Z}_2$, \mathbb{Z}_{18} and $\mathbb{Z}_6 \times \mathbb{Z}_3$ (0.5 pt).
 - b) S_4 , $A_4 \times \mathbb{Z}_2$, D_{12} and $\mathbb{H} \times \mathbb{Z}_3$, where \mathbb{H} is the quaternion group with 8 elements (0.5 pt).
- 2) Show that if a finite group G has only two conjugacy classes, then $G \cong \mathbb{Z}_2$ (1.0 pt).
- 3 a) Show that if S_n acts on a set with p elements and p > n is a prime number then the action has more than one orbit (0.75 pt).
- b) Let p be a prime. Show that the only action of \mathbb{Z}_p on a set with n < p elements is the trivial one (0.75 pt).
- 4) Prove or give a counter-example for the following claim: For every m which divides 60 there is a subgroup of A_5 of order m (1.5 pt).
- 5) Let G be a finite group. We define a sequence of groups (G_i) as follows. Let $G_0 = G$ and define inductively $G_i = G_{i-1}/Z_{G_{i-1}}$, where $Z_{G_{i-1}}$ is the center of G_{i-1} , so for example, $G_1 = G/Z_G$. This procedure gives rise to a sequence of groups

$$G = G_0 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow \cdots$$

where each map $G_{i-1} \longrightarrow G_i$ is a surjective group homomorphism whose kernel is the center of G_{i-1} .

a) Show that if $Z_{G_i} = \{e\}$ for some i, then $G_n = G_i$ for n > i (0.3 pt).

- b) Show that if G_i is Abelian, then $G_n = \{e\}$ for n > i (0.3 pt).
- c) Compute this sequence for D_8 , D_{10} and A_5 (0.9 pt).
- 6) Prove or give a counter example to the following claim: Let G_1 and G_2 be finite groups and $H_1 \triangleleft G_1$, $H_2 \triangleleft G_2$ be normal subgroups such that $H_1 \cong H_2$. If $G_1/H_1 \cong G_2/H_2$, then $G_1 \cong G_2$ (1.5 pt).
- 7) Let G be a group of order $231 = 3 \cdot 7 \cdot 11$. Show that the 11 and the 7-Sylows are normal. Show that the 11-Sylow is in the center of G (1.5 pt).
- 8) Show that a group of order $392 = 2^3 \cdot 7^2$ is not simple (1.5 pt).
- 1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
 - a) $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$, $\mathbb{Z}_6 \times \mathbb{Z}_5$, \mathbb{Z}_{30} and $\mathbb{Z}_2 \times \mathbb{Z}_{15}$ (0.5 pt).
 - b) S_4 , $A_4 \times \mathbb{Z}_2$, D_{12} and $\mathbb{H} \times \mathbb{Z}_3$, where \mathbb{H} is the quaternion group with 8 elements (0.5 pt).
- 2) Let $S \subset S_5$ be the set of 5-cycles, sitting inside the group of permutations of 5 elements. Then S_5 acts on S by conjugation:

$$\sigma \cdot \tau := \sigma \tau \sigma^{-1}, \qquad \sigma \in S_5 \quad \tau \in \mathcal{S}.$$

Compute the orbit and the stabilizer of the 5-cycle (1 2 3 4 5). (1.0 pt).

- 3) Let G be a finite group and $x \in G$.
 - a) Show that the set of elements of G which commute with x is a subgroup of G. This subgroup is denoted by C(x). (0.75 pt)
 - b) Show that the index of C(x) in G is the number of elements in the conjugacy class of x. (0.75 pt)
- 4 a) Let n > 4. Show that if A_n acts on a set with m < n elements then each orbit has size 1. (0.75 pt).
 - b) Show that if \mathbb{Z}_p acts on a set and p is prime, then each orbit has size 1 or p. (0.75 pt)
- 5) Let G be a finite group. We define a sequence of groups (G_i) as follows. Let $G_0 = G$ and define inductively $G_i = G_{i-1}/Z_{G_{i-1}}$, where $Z_{G_{i-1}}$ is the center of G_{i-1} , so for example, $G_1 = G/Z_G$. This procedure gives rise to a sequence of groups

$$G = G_0 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow \cdots$$

where each map $G_{i-1} \longrightarrow G_i$ is a surjective group homomorphism whose kernel is the center of G_{i-1} .

a) Show that if $Z_{G_i} = \{e\}$ for some i, then $G_n = G_i$ for n > i (0.3 pt).

- b) Show that if G_i is Abelian, then $G_n = \{e\}$ for n > i (0.3 pt).
- c) Compute this sequence for S_5 , D_8 and D_{10} (0.9 pt).
- 6) Let G be a group of order $385 = 5 \cdot 7 \cdot 11$. Show that the 11 and the 7-Sylows are normal. Show that the 7-Sylow is in the center of G (1.5 pt).
- 7) Show that a group of order $132 = 2^2 \cdot 3 \cdot 11$ is not simple (1.5 pt).
- 8 a) Let G act on a set \mathcal{X} , let $p \in \mathcal{X}$ and let H be the stabilizer of p. Show that the stabilizer of $g \cdot p$ is the subgroup gHg^{-1} . Conclude that H is normal if and only if it is the stabilizer all the points in the orbit of p. (0.5 pt)
 - b) Let H be a subgroup of a finite group G and let \mathcal{X} be the set of left H-cosets. Show that the formula

$$g(xH) = gxH$$

defines an action of G on \mathcal{X} and hence it also defines an action of H on \mathcal{X} . Prove that H is a normal subgroup of G if and only if every orbit of the induced action of H on \mathcal{X} is trivial, i.e., if and only if

$$hxH = xH$$
 for all $h \in H, x \in G$. (0.5 pt)

- c) Let G be a finite group and let p be the smallest prime which divides the order of G. Show that if H < G is a subgroup of index p (i.e., H has exactly p left cosets) then H is normal (hint: use the
- 1) Let D_n be the dihedral group given by

$$D_n = \langle a, b : a^n = b^2 = e; bab^{-1} = a^{-1} \rangle.$$

- a) Compute Z_{D_n} , the center of D_n , for n > 1. Analyse carefully the cases n = 2, n even and greater than 2 and n odd.
- b) Show that if n > 1, then $D_{2n}/Z_{D_{2n}}$ is isomorphic to D_n .
- 2) For each list of groups a) and b) below, decide which of the groups within that list are isomorphic, if any:
 - a) D_3 , S_3 and the group generated by

$$\langle a, b : a^3 = b^2 = e; aba^{-1} = ba \rangle.$$

- b) D_{12} , $\mathbb{Z}_4 \times D_3$ and S_4 .
- 3) Let G be a finite group. We define a sequence (G_i) of subgroups of G as follows. We let $G_0 = G$ and define inductively G_i as the group generated by

$$G_i = \langle ghg^{-1}h^{-1} : g \in G \text{ and } h \in G_{i-1} \rangle$$

So, for example, G_1 is the commutator subgroup of G.

- a) Show that each G_i is subgroup of G_{i-1} . Further, show that $G_i \triangleleft G_{i-1}$ and that the quotient G_{i-1}/G_i is Abelian.
- b) Show that if, for some i_0 , $G_{i_0} = G_{i_0+1}$ then $G_n = G_{i_0}$ for all $n > i_0$.
- c) Compute the sequence of subgroups G_i above for $G = D_8$, D_{10} and A_5 .
- 4) Show that if G has order $p_1p_2\cdots p_n$, for p_i primes with $p_i \leq p_{i+1}$ and H < G is a subgroup of order $p_2\cdots p_n$, then H is normal.
- 5) Let G be a group of order np^k , with n > 1, k > 0, p > 2 and n and p coprimes.
 - a) Show that if n < p then G is not simple,
 - b) Show that if n < 2p and k > 1, then G is not simple,
 - c) Show that if k > n/p and $n < p^2$, then G is not simple.
- 6) In what follows let G be a finite group and K, H < G. Prove or give counter-examples to the following claims.
 - a) If $K \triangleleft G$, then $K \cap H \triangleleft H$.
 - b) If K is a p-Sylow of G then $K \cap H$ is a p-Sylow of H.
- 7) Let p > 2. What is the order of a p-Sylow of S_{2p} ? Give an example of one such group. Finally, find all p-Sylows of S_{2p} .
- 1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if any:
 - a) \mathbb{Z}_{20} , $\mathbb{Z}_4 \times \mathbb{Z}_5$, $\mathbb{Z}_2 \times \mathbb{Z}_{10}$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$.
 - b) $\mathbb{Z}_2 \times D_7$, $\mathbb{Z}_2 \times \mathbb{Z}_{14}$, D_{14} .
- 2) Let G be the set of sequences of integers endowed with the following product operation $+: G \times G \longrightarrow G$

$$(a_1, a_2, \dots, a_n, \dots) + (b_1, b_2, \dots, b_n, \dots) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots).$$

Show that this operation makes G into a group. Show that $\mathbb{Z} \times G \cong G$ and hence conclude that, for groups, it may be the case that $A \times C \cong B \times C$ even though $A \ncong B$.

¹I'd never ask this in an exam, but at home you may try to prove that for finite groups it is true that $A \times C \cong B \times C$ implies $A \cong B$. If you just want to see a proof, take a look at Hirshon's paper On cancellation in groups.

- 3) Let n > m be natural numbers, n > 4, let X be a set with m elements. Show that the orbits of any action of S_n on X have size 1 or 2.
- 4) Let G be a group, S_G be group of bijections from G into itself and $\operatorname{Aut}(G) \subset S_G$ be the group of automorphisms of G. Consider the map $\operatorname{Ad}: G \longrightarrow S_G$, given by

$$Ad(g): G \longrightarrow G$$
 $Ad(g)(x) = gxg^{-1}$.

- a) Show that $Ad: G \longrightarrow Aut(G)$, i.e., for every $g \in G$, $Ad(g): G \longrightarrow G$ is an automorphism;
- b) Show that $Ad: G \longrightarrow Aut(G)$ is a group homomorphism and that the image of Ad is a normal subgroup of Aut(G). The image of Ad is called the *group of inner automorphisms*.
- c) Show that the kernel of Ad : $G \longrightarrow Aut(G)$ is the center of G and conclude that the group of inner automorphisms is isomorphic to the quotient G/Z_G .
- d) Give an example of a group which has an automorphism which is not an inner automorphism.
- 5) Classify all groups or order $2009 = 7^2 \cdot 41$.
- 6) Let G be a group and $n \in \mathbb{N}$
 - a) Let $H_i < G$ be subgroups, for $i \in \{1, \dots, n\}$, show that

$$\bigcap_{i=1}^{n} H_i$$

is a subgroup of G.

- b) If G is finite and p be a prime. Show that the intersection of all p-Sylows of G is a normal subgroup.
- 7) Let G be a finite group and K, H < G. Prove or give a counter-example to the following claims.
 - a) If $K \triangleleft H$ and $H \triangleleft G$ then $K \triangleleft G$.
 - b) If K is the only p-Sylow of G, then $K \cap H$ is a p-Sylow of H.