Group Theory Retake WISB221 on Thursday 2 Jan 2014, 13:30 - 16:30

De Nederlandse versie van het tentamen staat op pagina 1/2. You can do the exam in Dutch or in English. The questions are displayed in Dutch on page 1/2 and in English on page 3/4.

Write your name and student number on every solution page that you hand in. There is a total of 5 exercises; use a new page for every exercise.

Don't just provide the answer, but also show the reasoning that leads to the answer.

You are *not* allowed to use calculators, computers, phones, books, handouts and notes, etc. You are allowed to use the following factorisation: $2014 = 2 \cdot 19 \cdot 53$.

Exercise 1.

6pt

(a) What is the sign of the permutation

$$\sigma := (12)(34) \cdots (20132014)$$

in S_{2014} ?

- (b) Rewrite the permutation (123)(123)(12)(13) from S_3 as a product of disjoint cycles.
- 6pt (c) Representing the dihedral group D_9 as $\{e, r, \dots, r^8, s, sr, \dots, sr^8\}$ for $r, s \in D_9$ with $r^9 = s^2 = e$ and rsr = s, which of these 18 elements is $r^2s^1r^{2014}$?
 - (d) Determine the order of the following matrix in $GL(3, \mathbf{R})$:

$$m := \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

6pt

6pt

(e) Is the matrix m from Exercise 1(d) an element of $SO(3, \mathbf{R})$?

Exercise 2. Prove Cayley's theorem: every group is isomorphic to a subgroup of a permutation group.

[Please turn over]

Exercise 3 Prove or disprove:

- 6pt (a) The group $(\mathbf{R}, +)$ of real numbers for addition is cyclic.
- (b) If $\varphi: G \to H$ is a group homomorphism between finite groups with non-trivial image (i.e., $\varphi(G) \neq \{e_H\}$), then #G and #H have a common divisor > 1.
- 6pt (c) There exists a simple group of order 2014.
- 6pt (d) If N_1 is a normal subgroup of N_2 , and N_2 is a normal subgroup of N_3 , then N_1 is always a normal subgroup of N_3 .
- (e) If H_1 and H_2 are subgroups of a group G, such that H_1 has order 2014 and H_2 has order 7, then $H_1 \cap H_2 = \{e_G\}$.

Exercise 4. Consider the subset H of the direct product group $G := \mathbb{Z} \times \mathbb{Z}$ defined by $H := \{(a, a) : a \in \mathbb{Z}\}.$

- 3pt (a) Prove that H is a normal subgroup of G.
- 7pt (b) Prove that the quotient group G/H is isomorphic to **Z**.

Exercise 5. A group G acts *transitively* on a set X if the action has precisely one orbit.

- (a) Let G denote a finite group that acts transitively on a set \overline{X} . Prove that $\#\Lambda$ divides #G.
- (b) Give an example of an action of a finite group G on a set X such that #X does not divide #G.
- (c) Suppose that G is a group acting on a set X and H a subgroup of G. Prove that H acts transitively on X if and only if the following two properties hold:
 - (i) G acts transitively on X;
 - (ii) there exists an element $x \in X$ such that $G = HG_x$, where G_x is the stabiliser of x in G.

Notation: If K and L are subsets of a group, then

$$KL = \{kl \colon k \in K \text{ en } l \in L\}$$

is the set of products of elements of K with elements of L.

[The End]