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Solution 1

(a) The union of [0,1) and [2,3) does not belong to B, so B is not a topology. We
will show it is a basis. First of all, if x∈R then x∈ [n,n+1) for an integer n∈Z.
Hence, R= ∪B.

Secondly, let x ∈ [p1,q1)∩ [p2,q2), where p1,q1, p2,q2 are rational numbers
such that p1 < q1 and p2 < q2. Then p2 ≤ x < q1 and p1 ≤ x < q2, hence
x ∈ [max(p1, p2),min(q1,q2))⊂ [p1,q1)∩ [p2,q2). It follows that B is a basis.

(b) Since Q is countable, so is Q×Q, and it follows that B is countable. It follows
that (R,T ) is second countable, hence also first countable.

(c) The intervals (a,b) with a,b ∈ R, a < b form a basis Be for the Euclidean
topology on R. If x ∈ (a,b), there exist rational numbers p,q ∈ Q such that
a < p < x < q < b, hence x ∈ [p,q)⊂ (a,b) and we see that T contains Be and
hence the Euclidean topology.

(d) Since [0,1) ∈B it follows that [0,1) is open for T . Since [0,1] is closed for
the Euclidean topology, it is so for T . On the other hand, R \ [1,2) is closed
for T , hence [0,1) = [0,1]\ [1,2) is closed for T . From what we proved, [0,1)
and R \ [0,1) form a partition of R into sets from T . Therefore, (R,T ) is not
connected.

(e) Define Un := [1− 1
n ,1−

1
n+1) for n ∈ Z, n ≥ 1. The sets Un belong to T and

have [0,1) as their union. Since the union is disjoint, the open cover {Un}n≥1 of
[0,1) is infinite, and has no finite subcover. It follows that [0,1) is not compact.
Now [0,1) is closed in R by (d), hence also closed in [0,1]. Therfore, the latter
set cannot be compact.

Solution 2

(a) The fibers of π|B : B→ π(B) form a partition of B. Clearly, RB is the equivalence
relation determined by that partition. Thus, the equivalence classes of RB are the
following fibers:

(π|B)−1(π(b)) = B∩π
−1(π(b)) = B∩R[b], (b ∈ B).

These are the sets {(s, t)} with 0 < s < 1, |t| ≤ 1, and {(0, t),(1,−t)} with−1≤
t ≤ 1.

(b) From the description of the equivalence classes we see that X/RB is the Möbius
band.
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(c) The equivalence classes for RB are the fibers of the map g : B→ π(B) given by
g = π|B. It follows that there exists a map ḡ : B/RB→ π(B) such that g◦πB = g.
Let f be the composition of ḡ with the inclusion map i : π(B)→ X/R (or ḡ
viewed as map B/RB→ X/R). Then f ◦πB = i◦g = π|B.

(d) If ξ1,ξ2 ∈ B/RB we write ξ j = πB(b j), for suitable b1,b2 ∈ B. From f (ξ1) =
f (ξ2) it follows that π(b j) = f (πB(b j)) = f (ξ j) is independent of j. Therefore,
b1RBb2 and we conclude ξ1 = ξ2. It follows that f is injective.

Since π is continuous X→ X/RB, so is its restriction π|B and we see that f ◦πB :
B→ X/R is continuous. It now follows from a proven property of the quotient
topology on B/RB that f : B/RB→ X/R is continuous.

Finally, B is (closed and bounded in R2 hence) compact and πB is continuous,
hence B/RB is compact. Furthermore, X/R is Hausdorff. We just proved that
f : B/RB→ X/R is injective continuous. By a well known result it follows that
f is an embedding.

Solution 3

(a) Since ϕ2 = idM it follows that ϕ is bijective with inverse ϕ−1 = ϕ. It follows
that both ϕ and its inverse are continuous. Hence, ϕ is a homeomorphism.

Clearly, xRx. If xRy, then either y = x or y = ϕ(x). In the latter case, ϕ(y) =
x. Hence x ∈ {y,ϕ(y)} and we see that yRx. Finally, if xRy and yRz, then y ∈
{x,ϕ(x)} and z ∈ {y,ϕ(y)}. If y = x then z ∈ {x,ϕ(x)}.I f y = ϕ(x) then z ∈
{y,ϕ(y)} = {ϕ(x),x}. In both cases, xRz. If follows that R is an equivalence
relation.

Alternative: note that Γ := {idM,ϕ} with composition is a group of homeomor-
phisms, and xRy ⇐⇒ y ∈ Γx, so R is an equivalence relation.

(b) Let x ∈ π−1(π(V )). Then π(x) ∈ π(V ) or yRx for an element y ∈ V. Hence x ∈
{y,ϕ(y)} ⊂V ∪ϕ(V ). This shows that π−1(π(V ))⊂V ∪ϕ(V ).

Conversely, if x ∈ V ∪ϕ(V ), then π(x) ∈ π(V )∪ π(ϕ(V )) = π(V ). Hence the
identity.

(c) If U is open, then π−1(π(U)) is open by (b), hence π(U) is open for the quotient
topology.

(d) The set ϕ−1(U jm) is open, since ϕ is continuous. Furthermore, this set contains
ϕ−1ϕ(m) = m. It follows that Vm = Uim ∩ ϕ−1(U jm) contains m, is open and
satisfies the other properties.

(e) If M is compact, then so is π(M) =M/R by continuity of M. Conversely, assume
that M/R is compact. We will show that M is compact. Let {Ui}i∈I be an open
covering of M. Then there exist indices im and jm with the properties of (d), since
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{Ui} is a covering. Let Vm be as in (d). Then the sets π(Vm) are open and cover
π(M). By compactness of the latter, there exists a finite set of points m1, . . . ,mk
such that

π(M)⊂ π(Vm1)∪·· ·∪π(VmN ).

By taking preimages under π we obtain

M ⊂ ∪k
l=1π

−1
π(Vml) = ∪

k
l=1(Vml ∪ϕ(Vml))⊂ ∪

k
l=1(Uiml

∪U jml
)

this shows that {Ui}i∈I admits a finite subcover. Hence, M is compact.

Solution 4

(a) Clearly, ψ f ∈C(M) and supp(ψ f )⊂ suppψ ∩ supp f ⊂U. Since supp f is com-
pact and suppψ closed, it follows that suppψ ∩ supp f is compact, hence ψ f ∈
Cc(U).

(b) By (a) the map Iψ : Cc(M)→R is well-defined and linear. If f ≥ 0, then ψ f ≥ 0,
so Iψ( f ) = I(ψ f )≥ 0, and we see that Iψ is a positive integral.

(c) Since M is locally compact and second countable it is paracompact, hence allows
partitions of unity. By the assumption, there exists an open cover {U j} j∈J of M
and for each j ∈ J a strictly positive integral on U j. Let {η j} j∈J be a partition
of unity subordinate to {U j} j∈J. Then by (b), for each j ∈ J the map (I j)η j is
a positive integral on M. For each f ∈ Cc(M) we have that only finitely many
functions η j f are non-zero and have compact support contained in U j, so

I( f ) = ∑
j∈J

I j(η j f ) = ∑
j∈J

(I j)η j( f )

is a finite sum of positive real numbers. It readily follows that I is a positive
integral on M. If I( f ) = 0 then each of the terms in the above sum must be zero,
hence η j f = 0 for all j. It follows that f = ∑ j∈J η j f = 0. Therefore, I is strictly
positive.

(d) Since a topological manifold is locally compact Hausdorff and second countable,
all of the above applies. Therefore, we just need to show that for each m ∈ M
there exists an open neighborhood U and a positive integral I on U. There exists
an open neighborhood U of m which is homeomorphic to Rn which in turn
is homeomorphic to V := (0,1)n. Let χ : U → V be a homeomorphism. The
Riemann integral provides a strictly positive integral Ir on V. For f ∈Cc(U) we
note that f ◦χ−1 ∈ Cc(V ) and we define I( f ) = Ir( f ◦χ−1). Then I is readily
seen to be linear and positive. If I( f ) = 0, then f ◦χ−1 = 0 hence f = 0 on U
and since supp f ⊂U it follows that f = 0. Thus, I is strictly positive.
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Solution 5

(a) The function ηi : X → R is continuous, and R \ {0} is open in R. Therefore,
Vi = η

−1
i (R\{0}) is open in X . Let x∈ X , then ∑i∈I ηi(x) = 1 (with only finitely

many ηi different from zero). It follows that ηi(x) 6= 0 for at least one i, hence
x ∈Vi. We conclude that X = ∪i∈IVi, hence V is an open covering of X .

(b) By definition, V i = suppηi. Since {ηi} is subordinate to U , it follows that V i =
suppηi ⊂Ui.

(c) Since Vi ⊂V i ⊂Ui, it follows that V is a refinement. It remains to be shown that
V is locally finite. Let x ∈ X . Since the family {suppηi}i∈I is locally finite, it
follows that there exists a neighborhood N of x such that IN := {i ∈ I | suppηi∩
N 6= /0} is finite. If Vi∩N 6= /0, then i ∈ IN , so the collection Vi is locally finite.

(d) First assume (1). Then by a theorem (2) is valid. Now assume (2). Then in
the above we have shown that every open covering of X has a locally finite
refinement. By definition this implies (1).
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