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Solution 1

(a) The union of [0, 1) and [2,3) does not belong to A, so Z is not a topology. We
will show it is a basis. First of all, if x € R then x € [n,n+ 1) for an integer n € Z.
Hence, R = UZ.

Secondly, let x € [p1,91) N [p2,92), where pi1,q1,p2,q2 are rational numbers
such that p; < g1 and p; < ¢>. Then p) < x < g1 and p; < x < g3, hence
x € [max(pi, p2),min(q1,492)) C [p1,q91) N [p2,42). It follows that Z is a basis.

(b) Since Q is countable, so is Q x QQ, and it follows that 4 is countable. It follows
that (R, .7") is second countable, hence also first countable.

(c) The intervals (a,b) with a,b € R, a < b form a basis %, for the Euclidean
topology on R. If x € (a,b), there exist rational numbers p,q € Q such that
a<p<x<gqg<b,hencexe [p,q)C (a,b) and we see that .7 contains %, and
hence the Euclidean topology.

(d) Since [0,1) € A it follows that [0,1) is open for .7. Since [0,1] is closed for
the Euclidean topology, it is so for .7. On the other hand, R\ [1,2) is closed
for .7, hence [0,1) = [0, 1]\ [1,2) is closed for .7. From what we proved, [0, 1)
and R\ [0,1) form a partition of R into sets from .7. Therefore, (R,.7) is not
connected.

(e) Define U, := [1 — %, 1— ﬁ) for n € Z, n > 1. The sets U, belong to .7 and
have [0, 1) as their union. Since the union is disjoint, the open cover {U, },>; of
[0, 1) is infinite, and has no finite subcover. It follows that [0, 1) is not compact.
Now [0, 1) is closed in R by (d), hence also closed in [0, 1]. Therfore, the latter
set cannot be compact.

Solution 2

(a) The fibers of | : B— 7(B) form a partition of B. Clearly, Rp is the equivalence
relation determined by that partition. Thus, the equivalence classes of Rp are the
following fibers:

(zs) " (n(b)) = BNa~\(n(b)) = BNR[B], (b€ B).

These are the sets {(s,7)} with0 <s < 1,|¢| <1, and {(0,7),(1,—7)} with —1 <
r<1.

(b) From the description of the equivalence classes we see that X /Rp is the Mobius
band.



(©)

(d)

The equivalence classes for Rp are the fibers of the map g : B — 7(B) given by
g = 7|p. It follows that there exists a map g : B/Rp — 7(B) such that gotp = g.
Let f be the composition of g with the inclusion map i : 7(B) — X /R (or g
viewed as map B/Rp — X /R). Then fonp =iog = mB.

If &1,6 € B/Rp we write §; = mp(b;), for suitable by,by € B. From f(&;) =
f(&) it follows that m(b;) = f(mg(b;)) = f(&;) is independent of j. Therefore,
b1Rgb, and we conclude &; = &,. It follows that f is injective.

Since 7 is continuous X — X /Rp, so is its restriction 7r|p and we see that fo7p :
B — X /R is continuous. It now follows from a proven property of the quotient
topology on B/Rp that f : B/Rg — X /R is continuous.

Finally, B is (closed and bounded in R? hence) compact and 7p is continuous,
hence B/Rp is compact. Furthermore, X /R is Hausdorff. We just proved that
f:B/Rp — X /R is injective continuous. By a well known result it follows that
f is an embedding.

Solution 3

(a)

(b)

(c)

(d)

(e)

Since @? = idy, it follows that ¢ is bijective with inverse ¢~! = ¢. It follows
that both ¢ and its inverse are continuous. Hence, ¢ is a homeomorphism.

Clearly, xRx. If xRy, then either y = x or y = ¢(x). In the latter case, ¢(y) =
x. Hence x € {y, p(y)} and we see that yRx. Finally, if xRy and yRz, then y €
{x,o(x)} and z € {y,@(y)}. If y = x then z € {x,@(x)}.Ify = @(x) then z €
{y,0(y)} = {@(x),x}. In both cases, xRz. If follows that R is an equivalence
relation.

Alternative: note that I" := {idy, ¢} with composition is a group of homeomor-
phisms, and xRy <= y € I'x, so R is an equivalence relation.

Let x € 7~ 1(n(V)). Then 7(x) € (V) or yRx for an element y € V. Hence x €
{y,0(y)} CVU@(V). This shows that 7~ (z(V)) c VU (V).

Conversely, if x € VU @(V), then n(x) € 7(V)Un(¢(V)) = (V). Hence the
identity.

If U is open, then 7! (x(U)) is open by (b), hence 7(U) is open for the quotient
topology.

The set (p_1 (U jm) 1s open, since @ is continuous. Furthermore, this set contains
@ lo(m) = m. It follows that V,, = U;, N ¢~ 1(U;,) contains m, is open and
satisfies the other properties.

If M is compact, then so is 7(M) = M /R by continuity of M. Conversely, assume
that M /R is compact. We will show that M is compact. Let {U;};c; be an open
covering of M. Then there exist indices i,, and j,, with the properties of (d), since



{U;} is a covering. Let V,, be as in (d). Then the sets 7(V,,) are open and cover
m(M). By compactness of the latter, there exists a finite set of points my,...,my;
such that

(M) C (Vi) U---UT(Vipy)-

By taking preimages under 7 we obtain

M C Ui (Vi) = U (Vi U@ (Vi) C U (U

im 1

uUj,)

this shows that {U; };c; admits a finite subcover. Hence, M is compact.

Solution 4

(a)

(b)

(c)

(d)

Clearly, wf € C(M) and supp(y f) C suppy Nsuppf C U. Since suppf is com-
pact and suppy closed, it follows that suppy Nsuppf is compact, hence Y f €
C.(U).

By (a) the map Iy, : C.(M) — R is well-defined and linear. If f > 0, then yf >0,
so Iy(f) =1(yf) > 0, and we see that Iy, is a positive integral.

Since M is locally compact and second countable it is paracompact, hence allows
partitions of unity. By the assumption, there exists an open cover {U;}jc; of M
and for each j € J a strictly positive integral on U;. Let {n;} jes be a partition
of unity subordinate to {U;} je;. Then by (b), for each j € J the map (I})n; is
a positive integral on M. For each f € C.(M) we have that only finitely many
functions 7 f are non-zero and have compact support contained in U}, so

1) =Y. 1i(n;if) =Y Uj)n,(f)

jer =

is a finite sum of positive real numbers. It readily follows that I is a positive
integral on M. If I(f) = O then each of the terms in the above sum must be zero,
hence 1;f =0 for all j. It follows that f =} ;c;n;f = 0. Therefore, [ is strictly
positive.

Since a topological manifold is locally compact Hausdorff and second countable,
all of the above applies. Therefore, we just need to show that for each m € M
there exists an open neighborhood U and a positive integral / on U. There exists
an open neighborhood U of m which is homeomorphic to R" which in turn
is homeomorphic to V := (0,1)". Let x : U — V be a homeomorphism. The
Riemann integral provides a strictly positive integral I, on V. For f € C.(U) we
note that foy ' € C.(V) and we define I(f) = I.(fox~'). Then I is readily
seen to be linear and positive. If I(f) = 0, then fox ' =0hence f=0o0nU
and since suppf C U it follows that f = 0. Thus, [ is strictly positive.



Solution 5

(a)

(b)

(c)

(d)

The function 7n; : X — R is continuous, and R\ {0} is open in R. Therefore,
V;=n;"(R\{0}) is open in X. Let x € X, then ¥;c; N;(x) = 1 (with only finitely
many 1); different from zero). It follows that 7;(x) # O for at least one i, hence
x € V;. We conclude that X = U;<;V;, hence ¥ is an open covering of X.

By definition, V; = suppn;. Since {1);} is subordinate to % , it follows that V; =
suppn; C U;.

Since V; C V; C Uj, it follows that 7 is a refinement. It remains to be shown that
¥ is locally finite. Let x € X. Since the family {suppn;}ic; is locally finite, it
follows that there exists a neighborhood N of x such that Iy := {i € I | suppn; N
N # 0} is finite. If V;NN # 0, then i € Iy, so the collection %; is locally finite.

First assume (1). Then by a theorem (2) is valid. Now assume (2). Then in
the above we have shown that every open covering of X has a locally finite
refinement. By definition this implies (1).



