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EXAM COMPLEX FUNCTIONS

APRIL 19 2010

e You may do this exam either in English or Dutch.
e Put your name and studentnummer on every sheet you hand in.

e Give only reasoned solutions, but try to be concise.

(3 pt) Let U := {# € C|Re(z) > 0}. f is analytic on U and satisfies
f(1) = 0 and Re(f(2)) = log|z|. Show f is unique and determine it.

2. (5 pt) Let d € N. Consider the series fq(z) = Y oo n¢~1z". Show that
its radius of convergence is 1 and prove (by induction) that there exists a
polynomial p, of degree at most d — 1 such that for |z| < 1
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Use the method of generating functions to prove that
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3. (5 pt) Let n € N>, and find the roots of 2™ + 1. Show that:
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Hint: Use the chain which lies on the boundary of the circular sector with

vertices 0, R and Ren . Show that the integral of 1/(z" + 1) over the
circular arc approaches 0 as R — oo. (See page 2 for a picture.)

4. (3 pt) Prove the (global) maximum modulus principle.

5. (4 pt) Let U := {z € C|Re(z) > 0} and assume f : U — C is analytic.
Suppose that f(z) = g(z)f(z+1) for all z € U for some analytic function
g : C — C. Prove there exists an analytic continuation of f to C.

6. (2 pt Bonus) Find all analytic functions f on C with |f(z)| = |f(|z])].

The chain for exercise 3:






