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Answers exam Complex Functions 2010.

1. Write f = u+iv. It is given that u(x,y) = 3 log (z* + ). Using the Cauchy
Riemann equations we notice
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The first equation gives us v(z,y) = v(x,0) + arctan (y/z). Plugging this in the
second equation gives
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Hence v(z,0) is a constant function. Since f(1) = 0 we conclude that v(z,0) is

identically zero. Thus v(z,y) = arctan (y/x).

2. The fastest way to calculate the convergence radius is by using the ratiotest
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We have f1(z) = (1 —2)~! so the statement is trivial for this case. Assume the
statement is true for d. We notice (tacitly using Thm 5.1, page 72) that
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and the polynomial in the numerator indeed has degree at most d. We know that
(1 — 2)%f4(2) is a polynomial of degree at most d — 1. Hence its d" coefficient
is zero. We can find the coefficients of (1 — 2)¢ by Newtons binomial theorem:
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Now using the expression for the product of two series we arrive at
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3. We know that 1/(z" + 1) has simple poles in the points e% e*n", k =

)

0,1,...,n — 1. We parameterize our chain - by the following curves:
m(t) =t 0<t<R
_ pit 2
’Yz(t)—Re;m 0<t< =8
v3(t) =te™» 0 <t < R(reverse direction)



First we estimate the integral over ~s:

1 27 /n d 2
/ +1dz < lim Rdg i ik
Z'Vl
V2

———— < lim —— =0
R—oo Jo |‘R’”‘€“’“5 —+ 1| ~ R—oo n(R" — 1)
Hence the residue theorem gives us
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We conclude that

a1 —ne (1 — %) ~ sinm/n

/°° dx 2mq w/n
0

4. Let U be a connected open set and let f be a function which is analytic on
U. Let us assume that there exists a point zy € U with |f(z0)| > |f(2)| for all
z € U. Now assume f is not locally constant at zg. Then f is an open mapping
in a neighborhood of zy. Thus there exists an open disk centered at f(zo) which
is a subset of f(U). But then f(U) contains points that have a larger distance
to the origin than f(zp). We conclude that f must be locally constant at z.
By analytic continuation f must be constant on U.

5. Define the following function F': C — C:
Flz) = f(2) for Re(z) >0
2= f(z+n)HZ;1g(z+k) for —n <Re(z) <-n+1

Clearly f is analytic on {z € C|Re(z) & Z<o}. Suppose Re(z)) = —n € Z<o.
Denote by D a disk with radius < 1 centered at zy. We notice that for z € D
with Re(z) > —n we have

F(z)=f(z+n) ﬁg(z+k) :f(z+n+1)Hg(z+k)
k=0 k=0

We conclude that F' is equal to the analytic function f(z+n+1)[];_,9(z+k)
on D. Thus F is analytic in z5. We conclude that F' is analytic on C.

6. Let f # 0 be such a function. We can write f(z) = a,2"¢g(z) for some
n > 0 and an analytic function g : C — C satistying ¢(0) = 1 and a,, # 0. We
notice using the residue theorem that
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Thus |f(|z|)| > |an||z|". This implies |g(z)] > 1. Hence 1/¢(0) is a maximum
for the analytic function 1/g. The maximum principle (or Liouville’s Theorem)
implies that g is constant. We conclude that functions of the form f : C — C,
f(2) = a,z™, are the only functions that satisfy the required properties.



