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Exercise 1.
a. It is well known that the geometric series converges for |z| < 1 and thus
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for |z| < 1. Thus p > 1. If p > 1 then the series should be analytic and
hence continuous in €', since this is not the case we must conclude that
p = 1. Clearly our series equals a rational function on |z| < 1.

b. For |z| < 1 we have
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The fact that these two series coincide on an open set with accumulation
point 0 implies that their coefficients are equal, and we are done.



c. We know that 2% € (0,7) thus we may apply the formula from b.
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Exercise 2. Define the polynomial P : C — C
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This is an analytic nonconstant function on C. The Maximum Modulus
Principle implies (see Corollary 1.4, p.92) that |P(z)| attains its maximum
over D(0,1) at a point on its boundary, i.e. on the unit circle.

Suppose that |P(z)| < 1 for all points z on the unit circle. Then we must
have |P(z)| < 1 for all points z € D(0,1). But |P(0)| = |z1|- |22| ... |za| = 1,
which is a contradiction, and we must conclude that there exists a point z
on the unit circle such that |z — 21| - |z — 22| - - - |z — 2| = |P(2)] > 1.

Exercise 3.
a. Let z € U and write z = x +14y with x,y real. It follows that (Ref(z))? —

(Imf(2))? = x and 2(Ref(2))(Imf(2)) = y. Since y # 0 we have Ref(z) # 0

and we may write

(Ref(2))? (myf()) =2

We can write this as a quadratic equation:
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It’s solutions are

(Ref(2))? = T+ ;52 +y? i|z\ iZRe(z).

Since Ref(z) is a real number we must take the plus sign. Also we find that
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We conclude that there exist «, 5 : U — {—1, 1} such that for all z € U \ R
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b. Write u(z,y) = Ref(z + iy) and v(z,y) = Imf(z + diy). If the Cauchy

Riemann equations are satisfied in some point then we may at least assume
that o and 8 do not change sign in some open disc around that point. So
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Ref(z) =

|z] + Re(z) and Imf(z) =

2| — Re(2)

and

v Bx+iy) vy 1 oy Blatiy) Y VYt

oy 22 \/:c2+y2\//$2+y2_x_|?/| 2v/2 VaZ 4 2

and we must conclude that |y|a(x + iy) = yB(x + iy).

c. Let us suppose f is analytic. C can be parametrized by a continuous
path 7. Then (Ref) o~ is continuous so if o changes sign on C'\ {—R} then
by the intermediate value theorem there should be a point z on C'\ {—R}
such that Ref(z) = 0. Since this is not the case we must conclude that
a is constant on C'\ {—R}. Analogously 3 is constant on C'\ {R}. This
is impossible because the result of b. implies that « and S should have
the same sign on the part of the circle where Im(z) > 0 and opposite sign
on the part of the circle where Im(z) < 0. We conclude that f is not analytic.

Exercise 4. Denote by Cg the circle with radius R centered at the origin

and let f(z) = e*. We can parametrize the circle by Re® with 0 <t < 27.
We notice using Thm 7.3 that
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Exercise 5. Let zgp € D(0, p). Because D(0, p) is open we can find an r > 0
such that |z9| +7 < p. Now write z = 29 + (¢ — 29). Then by the binomial
formula we have
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Now if |z — 29| < r we have |z9| + |z — 20| < p. Thus
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converges. Since the convergence is absolute we may rearrange the terms to
conclude that

f(z) = ki;o (2 an (Z) zgk> (2 — z)*

converges absolutely for |z — 29| < r. Thus f is analytic in zg. Since zy was
arbitrary we conclude that f is analytic on D(0, p).



