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Exercise 1 (7 pt) Prove that a triangle with vertices a, b, c ∈ C taken in
the counter-clockwise order is equilateral if and only if

a + ωb + ω2c = 0,

where ω = ei 2π
3 .

There are several solutions possible.

1. It holds that 1 + ω + ω2 = 0. Indeed ω 6= 1 but ω3 = 1, so that

0 = ω3 − 1 = (ω − 1)(ω2 + ω + 1).

A triangle abc is equilateral if and only if its side (c− b) is the side (b− a) rotated
through 2π

3
counter-clockwise:

This is the case if and only if

c− b = ω(b− a) ⇐⇒ ωa + (−1− ω)b + c = 0

⇐⇒ ωa + ω2b + c = 0

⇐⇒ ω3a + ω4b + ω2c = 0

⇐⇒ a + ωb + ω2c = 0,

where it is also used that ω 6= 0.

2. We notice that the equation a+ωb+ω2c = 0 is invariant under translation, rotation
and contraction, i.e. under the transformations (a, b, c) → (ea + d, eb + d, ec + d)
for d, e ∈ C, for this one uses that 1 + ω + ω2 = (ω3 − 1)(ω − 1)−1 = 0. Let us call
this ‘the invariance property’.

Suppose that abc is equilateral. By the invariance property we may assume that
a = 1, b = ω and c = ω2. Hence a + ωb + ω2c = 1 + ω2 + ω4 = 1 + ω + ω2 = 0.

Now suppose a + ωb + ω2c = 0. By the invariance property we may assume that
c = 0. Then a = −ωb, thus |a| = |b|. Also we find |b−a| = |(1+ω)b| = |−ω2b| = |b|.
We conclude that abc is equilateral.

Exercise 2 (10 pt) Is there an analytic function f : U → C defined on
some open subset U ⊂ C such that

a. Re f(z) = |z|2 ? b. Re f(z) = log(|z|2) ?
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a. Suppose such an f exists. Write f = u + iv and z = x + iy, where u = Re f and
v = Im f are C∞ functions of (x, y). By the Cauchy-Riemann equations we must
have

∂v

∂y
=

∂u

∂x
and

∂v

∂x
= −∂u

∂y
.

These equations imply that u must satisfy

∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0

in its definition domain U . Clearly, for u(x, y) = |z|2 = x2 + y2, we have ∆u = 4
for all (x, y) ∈ U . We conclude that a function f with the desired properties does
not exist.

b. Such an f exists. Let U be the complex plane minus the non-negative real numbers,
and let f(z) = 2(log |z|+iarg(z)). It is known that this definition makes f analytic,
and indeed Ref(z) = log(|z|2).

Exercise 3 (10 pt) Let

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

be a polynomial of degree n ≥ 1 with coeffcients aj ∈ C for j = 0, 1, . . . , n−1.
Prove that

max
|z|≤1

|P (z)| ≥ 1

with equality attained only for P (z) = zn.

Hint: Apply the Maximun Modulus Principle for the polynomial Q(w) =
wnP

(
1
w

)
.

Define the polynomial Q(w) = 1 + an−1w + . . . + a1w
n−1 + a0w

n. By the maximum

modulus principle |Q| attains its maximum on the closed unit disc in a point w with

|w| = 1. Hence |P (w−1)| = |wnP (w−1)| = |Q(w)| ≥ |Q(0)| = 1. Equality is obtained

precisely when the maximum of |Q| is 1, i.e. when it attains its maximum in z = 0. The

maximum modulus principle then implies that Q is constant, thus p(z) = zn.
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Exercise 4 (8 pt) Compute∫
γ

(
z2 + 1
z2 − 1

)3

dz,

where γ is the circle |z− 1| = 1 oriented counter-clockwise and traced once.

Let

f(z) =

„
z2 + 1

z + 1

«3

=

„
z − 1 +

2

z + 1

«3

.

By the generalized Cauchy formula we getI
γ

„
z2 + 1

z2 − 1

«3

dz =

I
γ

f(z)

(z − 1)3
dz =

2πi

2!
f (2)(1)

= πi
d

dz

˛̨̨̨
z=1

3

„
1− 2

(z + 1)2

«„
z − 1 +

2

z + 1

«2

= 3πi

 
4

23
· 12 + 2

„
1− 2

22

«2

· 1

!
= 3πi.

Exercise 5 (10 pt) Is there an analytic function f on the open unit disc
such that

f

(
in

n

)
= − 1

n2

for all n ≥ 2 ?

Suppose that such function f exists. We notice that for the sequence i2n/(2n) we have
f(z) = −z2. Since this sequence defines a set with 0 as accumulation point we conclude
that f(z) = z2. But then

f

„
i3

3

«
=

1

9
6= − 1

32
.

Contradiction. We conclude that a function f with the desired properties does not exist.

Bonus Exercise (10 pt) A convex hull of a finite number of points z1, z2, . . . , zn ∈
C is the minimal convex subset of C containing all these points.

Let

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 =

n∏
k=1

(z − zk)

be a polynomial of degree n ≥ 2 with coeffcients aj ∈ C for j = 0, 1, . . . , n−1.
Prove that roots of P ′(z) lie in the convex hull of the roots z1, z2, . . . , zn of
P (z) in C.
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Hint: A point z ∈ C is in the convex hull of the points z1, z2, . . . , zn if and
only if

z =
n∑

k=1

λkzk

for some λk ≥ 0 with
n∑

k=1

λk = 1.

Let w be a root of P ′(z). If the multiplicity of w is bigger then 1, then w is also a root of
P and there is nothing left to prove. So let us suppose that w has multiplicity 1. Then
we see

0 =
P ′(w)

P (w)
=

d

dz

˛̨̨̨
z=w

log P (z) =
d

dz

˛̨̨̨
z=w

nX
k=1

log(z − zk)

=

nX
k=1

1

w − zk
=

nX
k=1

w − zk

|w − zk|2
.

Taking the complex conjugate yields

0 =

nX
k=1

w − zk

|w − zk|2
and thus w =

nX
k=1

zk

|w − zk|2
Pn

l=1
1

|w−zl|2

and we are done.
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