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Exercise 1. There are several solutions possible.

1. It holds that 1 +w + w? = 0. Indeed w # 1 but w? = 1, so that
0=w?®—1=(w-1DwW+w+1).

A triangle abc is equilateral if and only if its side (¢ — b) is the side
(b — a) rotated through 2F counter-clockwise:

This is the case if and only if

c—b=w(b—a) wa+ (=1—-w)b+c=0
wa+w?b+c=0
wa+wib+wie=0

a4+ wb+w?c=0,

1o

where it is also used that w # 0.

2. We notice that the equation a + wb + w?c = 0 is invariant under
translation, rotation and contraction, i.e. under the transformations
(a,b,¢) — (ea +d,eb+ d,ec + d) for d,e € C, for this one uses that
l4+w+w?=(w?—1)(w—-1)"1 =0. Let us call this ‘the invariance
property’.

Suppose that abc is equilateral. By the invariance property we may
assume that ¢ = 1,b = w and ¢ = w?. Hence a + wb + w?c =1+ w? +
wr=14+w+w?=0.

Now suppose a + wb + w?c = 0. By the invariance property we may
assume that ¢ = 0. Then a = —wb, thus |a| = |b]. Also we find
|b—al = [(1+w)b| = | —w?b| = |b]. We conclude that abc is equilateral.



Exercise 2.

a. Suppose such an f exists. Write f = u + iv and z = x + iy, where
u = Re f and v = Im f are C* functions of (z,y). By the Cauchy-
Riemann equations we must have
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These equations imply that u must satisfy

?u  0*u
Au=T2 00
YT e + Oy?
in its definition domain U. Clearly, for u(z,y) = |z|*> = 2 + %, we

have Au = 4 for all (z,y) € U. We conclude that a function f with
the desired properties does not exist.

b. Such an f exists. Let U be the complex plane minus the non-negative
real numbers, and let f(z) = 2(log |2| 4 iarg(z)). It is known that this
definition makes f analytic, and indeed Ref(z) = log(|z|?).

Exercise 3. Define the polynomial Q(2) = 14 a,_12+...+a12" ' +apz™.
By the maximum modulus principle |@Q| attains its maximum on the closed
unit disc in a point w with |w| = 1. Hence |P(w™!)| = [w"P(w™1)| =
|Q(w)| > |Q(0)| = 1. Equality is obtained precisely when the maximum of
|Q| is 1, i.e. when it attains its maximum in z = 0. The maximum modulus
principle then implies that @ is constant, thus p(z) = 2.
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By the generalized Cauchy formula we get

7£ <%>3dz = j{ %dz =)

Exercise 4. Let




Exercise 5. Since f is analytic on the open unit disc, we can represent it
with a powerseries in 0. We notice that for the sequence i*"/(2n) we have
f(z) = —22. Since this sequence defines a set with 0 as accumulation point
we conclude that f(z) = 22. But then
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We conclude that a function f with the desired properties does not exist.

Bonus exercise. Let w be a root of P’'(2). If the multiplicity of w is bigger
then 1, then w is also a root of P and there is nothing left to prove. So let
us suppose that w has multiplicity 1. Then we see
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Taking the complex conjugate yields
n
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and we are done.



