Docent: Yu.A. Kuznetsov
Assistants: L. Molag, W. Pranger

SOLUTIONS ENDTERM COMPLEX FUNCTIONS
JUNE 26 2013, 9:00-12:00

Exercise 1 (10 pt) Give an analytic isomorphism between the first quad-
rant

Q={2€C:Re(z) >0 and Im(z) > 0}
and the open unit disc D ={z € C: |z| < 1}.

We will construct the required analytic isomorphisn as a composition of two maps, g :
Q — H and f: H — D where H denotes the upper halfplane.

Consider the function g : Q — H given by g(z) = z%. Writing z in polar form, one indeed
notices that g maps to H, since the argument is doubled by the mapping. We notice that
an analytic inverse of g can be given by z — |z|e%ilog * (leave out the ray of non-negative
real numbers). We conclude that g is an analytic isomorphism.

Let us look for a linear fractional transformation f : H — D. Such a transformation
can, for example, map {0,7,00} onto {—1,0,1} (in this order). This defines f uniquely,
namely:

z—1
1(z) = z2+1i
Let us prove that f indeed maps to D. Write z = x 4 iy, with y > 0. Indeed, we have
Sl w1 <1
z+1 x2+ (y+1)2
We notice that for w € D
1 N d4w
I w) = i

and can therefore conclude that f is an analytic isomorphism. Since the composition
of analytic isomorphisms is again an analytic isomorphism we conclude that f o g is an

analytic isomorphism between @ and D.

Exercise 2 (25 pt) Let a,b > 0. Prove that the following integrals converge
and evaluate them.

a. (10 pt) /°° cos(ax) — cos(bx) I

2

—00



Convergence of [%_ wda: means that

. B coq(az) cos(bx) coq(az) cos(bx) P
lim , o [, S5 dy exists. Since ©REE20E s an even function:

B — o
B _ A _
lim / cos(az) - cos(bx) de - lim [/ cos(az) - cos(bx) de
A— —oco0 Ja €z A — o0 0 €z
B — o0 B — o0
n /B cos(azx) —2(:os(bx) dx]
o x
B —
_ 9 fim cos(azx) 2cos(bac) de
B—oo 0 X
B J—
~ im cos(azx) 2cos(bx) e
B—oo -B x

We'll show that the last limit exists. First, notice that cos(ax) — cos(bx) =
iax bxzi

Re(e'® — ¢**") and therefore it suffices to compute imp_ oo Re(ffB %dw)

With 'Hoépital, or the fact that cos(azx) — cos(bz) = z2(a® — b?)/2 + O(x 1), we can

see that COS(‘”L%“’I) has no (non-removable) singularity on R, but eﬁz— does
have a simple pole in zero! For this reason, we use the contour depicted in the image.

Cr

Cs
Ly /N s
-R -] ¢ R
Of course, we take 6 | 0 and R — oo. The lemma on page 196 of Lang implies
that lims)o fCa %fmdx = —m‘Resz:o(%‘ib“) = 7(a — b), where the minus

sign comes from the fact that our path is clockwise orientated. (Cauchy’s theorem,
which is used in the prove of the lemma, works for counter-clockwise orientated).

iax bxi

Showing limpr— o fCR le‘ = 0 is straight forward.

Notice that there are no poles inside our contour and therefore:

/// / /+7ra—b)*0
R_)OOMO Cs Ly CRr Lo

Clearly, our integral equals 7(b — a).

Remark. For the convergence of the integral one can also use that (cos(azx) —

cos(bz))/x? < 2/x* and thus it converges by the comparison test.



b. (15 pt) / e’ cos(bx) dx  (Hint: Use a rectangular countour.)

—0o0

2
Convergence follows in the same way as above when we remember [, e %" dz =
. 2, .
V=. As usual, we write cos(br) = Re(e™®) such that we get Jpee® Fibr - The
idea is to transform our integral to a gaussian integral as above and we will achieve
this with a translation of a complex number ¢: z — x +t. We get

—ax® +ibz — —a(z +t)> +ib(x + t) = —az® + (ib — 2at)z 4 (—at® + ibt)

Notice that taking ¢ = i:> ensures that the linear term on the right vanishes,

2a
it equals —ax? + (—at? + 4bt). For this reason, let the contour be the rectan-
gle formed by [-R,R,R + iz, —R+ i%], orientated counter-clockwise. Since

2a’

flx) = e~ +ibT i an entire function, the integral will equal zero. It is easy

i
to prove that the vertical path’s will not contribute, i.e. limgr— f;ﬂ 2a f(z)dx =

. -R .
limp—o [Z5, ;o f(z)dx =0. We end up with:
2a
R —R+i R+iX
/ 67am2+ibmdl' _ _/ 2a 67am2+ibzdl' _ / 2a 67am2+ibzdl'
-R R+ig —R+i2

Notice that, because of the smart choice of t = i%, letting R — oo, the last in-
tegral is simply [ e o H(—at?Hibt) go _ o—at?ibt \/Z. Taking the real part, we

can conclude [ e~ cos(bz)dx = b/ (2a) JE

Remark. For the convergence of the integral one can also use that

le™" cos(bz)| < e~

and thus it converges by the comparison test.

Exercise 3 (10 pt) Consider the polynomial function P(z) = 27 — 2z — 5.
a. (7 pt) Determine the number of roots of P with Re(z) > 0.

We consider the contour g given by (R > 0):
Lg(t) =it with ¢t € [-R, R|
Cr(t) = Re" with t € [-7/2,7/2]

We define Q(z) = 2" — 5. In order to apply Rouché’s theorem we will prove that
|[P(z) — Q(2)|] < |Q(2)| on vr. On Cgr we can obviously pick R big enough to
achieve this. On Lg, let us first consider the case that |t| < 5/2. Then we see that

|P(it) — Q(it)| = 2|t| < 5 < | —it" + 5| = |Q(it)|.
For |t| > 5/2, we have

|P(it) — Q(it)|* — |Q(it)|* = 4t® — (¢** +25) = —t*(¢'> — 4) — 25 < 0.



It remains to show that P does not have a root on yr. Since it has only finitely
many roots we can pick R big enough such that none of its roots are on Cr. There
is also no root on Lg, since

|P(it))* = t*(t° +2)* + 25 > 0.

Thus we may apply Rouché’s theorem to conclude that P has just as many roots
inside vr as Q. Since @ has the roots 5'/7,5/7e?™/7 51/7e=27/T e conclude that
P has three roots (counted with multiplicity) in the region with Re(z) > 0.

Alternative solution. We know that

1 P'(2)

2mi [, P(2)

dz = number of roots of P (counted with multiplicity).

By log we denote the logarithm with argument in (0, 27). We notice that

!
];((j)) dz = [log P(2)];n" = log(=5 4 iR(R® + 1)) — log(—5 — iR(R® + 1))
Lgr
mi 3w .
—>7—7f—masR—>oo.

We notice that

P/(Z) /2 7R7e7it _2Reit /2
dz =1 - 2 dt ) 7dt = Tme
Cr P(Z) ¢ Z[W/Q R7e™t — 2R%e?t — 5 - Z[W/Q i

as R — oo, and we are done.
b. (8 pt) How many of them are simple?

Suppose P has a root w (with Re(w) > 0) of multiplicity > 1. Then we have
0= P'(w) = Tw® -2, thus w = (%)1/662“’“/7 for some k € {—1,0,1}. However,
then we would have

i —12 12 2 1/6
—2w—5|=|—2w-5>5-=2=(=2 )
|w" — 2w — 5| ‘ w 5‘ 5 7 (7) >0

We conclude that the three roots are simple.

Bonus Exercise (15 pt) Prove that

/ 2sm(:z:) oy = 2 +g/ loggac) cos(a:Q) .
o log™(z) + 7 e mJo log*(x)+ T

You may assume that the integrals converge.
Let us define the function f : C\ {iy|ly < 0} — C by
eiz

f(z) = log(z) — mi/2



where the argument is chosen in (—7/2,37/2). Let us integrate f over the following con-

tour.
Cr
Ce
=f A =
-R —€| € R
For the integral over the little semicircle ¢. we have

| <1 0 efesin(t) G <l 0
. . < i _
<10 / f=hm | Togte v — w2y < = B Tioge

For the integral over the big semicircle Cr we will use the inequality sin(t) > Zt¢ for

0<t< 3. Wesee

™ —Rsin(t) z —Rsin(t)
/f‘g/ c R dt:2/2 AR —;"
O o |log(R) +i(t —7i/2)] o |log(R) +i(t — wi/2)]
T _TRt _ _-R
< 2/2 e 2R ;= 41—ce
0 log R m logR

By the residue theorem we get

— 0 as R — oo.

° et ° e’ z—1 ; 2
- —(—1)dt —  dt=2milim ——————— ¥ = -
/O Tog (@) 1 i —mija DA+ /O log (1) — /2 T Tog(2) — log(i) © e

Working this out leads to the required equality.



