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Exercise 1 (10 pt): Consider a transformation of the complex plane

z 7→ az̄ + b,

where a, b ∈ C with |a| = 1. Prove that this transformation has a straight
line composed of fixed points if and only if

−ab̄ = b.

Let f denote the transformation z 7→ az + b.

(⇒) Assume that there is a line in the complex plane composed of fixed points of f , i.e.
f(z) = az+ b = z. It should also hold that f ◦ f(z) = f(f(z)) = f(z) = z. If we write out
what this means, we get the following: f(f(z)) = f(az+b) = a(az+b)+b = z+ab+b = z.
Here we used |a| = 1 and we conclude that ab = −b.

(⇐) Assume that ab = −b. Plugging b
2

into f , we get f( b
2
) = a( b

2
)+b = − b

2
+b = b

2
i.e. b

2

is a fixed point of f . A line in C which goes through this point is of the form b
2

+Reit for

R ∈ R and some real value t which we need find. Notice that |a| = 1 implies that a = eiφ

for some real value φ.

f(
b

2
+Reit) = eiφ(

b

2
+Reit) + b = Reiφ−it +

b

2

Solving f( b
2

+ Reit) = b
2

+ Reit for t yiels t = φ
2

and it follows that R 7→ b
2

+ Rei
φ
2 is a

line composed of fixed points of f .

Exercise 2 (10 pt): Let m > 0 be integer. Find the convergence radius of
the following series

∞∑
n=0

(an1 + an2 + · · ·+ anm)zn,

where aj ∈ C with |aj | = 1 for j = 1, 2, . . . ,m.

Note that

f : z 7→
m∑
j=1

1

1− ajz
(1)

1



is analytic in C\{a1, . . . , am}. Since the power series expansion of f about 0 has a radius
of convergence that is “as big as possible” (see the last assertion of Theorem 7.3 on page
128 of Lang), we find that its radius of convergence is at least 1. Since none of the terms
in the sum in (1) cancel each other out we find that the radius of convergence must be
equal to 1. Note that for |z| < 1 we have

∞∑
n=0

(an1 + · · ·+ anm)zn = lim
N→∞

N∑
n=0

(an1 + · · ·+ anm)zn

= lim
N→∞

N∑
n=0

(a1z)
n + · · ·+ lim

N→∞

N∑
n=0

(amz)
n

=
1

1− a1z
+ · · ·+ 1

1− amz
= f(z).

Hence, by Theorem 3.2 on page 62 of Lang we find that the series for f about 0 coincides

with the series
∑∞
n=0(an1 + + · · ·+ anm)zn. We conclude that the radius of convergence of

our series is 1.

Exercise 3 (15 pt): Let Ω ⊂ C be open and bounded. We define the
Cauchy-Riemann operator by

∂z :=
1

2

(
∂

∂x
+ i

∂

∂y

)
.

Prove that the boundary value problem{
∂zu= f in Ω
u|∂Ω = g

for given continuous functions f : Ω → C and g : ∂Ω → C has at most one
solution u : Ω→ C that is continuous in Ω.

Let w1 and w2 denote the real and imaginary part of a function w : Ω → C so that
w = w1 + iw2. Note that

2∂zw =
∂w1

∂x
− ∂w2

∂y
+ i

(
∂w1

∂y
+
∂w2

∂x

)
.

This shows us that w is holomorphic in Ω, or equivalently, satisfies the Cauchy-Riemann
equations in Ω if and only if ∂zw = 0 in Ω.
Now suppose u, v : Ω→ C are both continuous on Ω and satisfy the given equation. Their
difference w := u− v is then also continuous in Ω and satisfies{

∂zw = f − f = 0 in Ω
w|∂Ω = g − g = 0.

By compactness of Ω we find that |w| attains its maximum on Ω. Since w is holomorphic

in Ω we may apply the Maximum Modulus Principle to each connected component of Ω

(cf. Corollary 1.4 on page 92 of Lang) to find that this maximum must be on ∂Ω. This

implies that |u(z)− v(z)| = |w(z)| ≤ 0 for all z ∈ Ω. We conclude that u = v.
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Exercise 4 (20 pt): Let f(z) = z6 − 5z4 + 10.

(a) (15 pt) Prove that f has

(i) no zeroes with |z| < 1;
(ii) 4 zeroes with |z| < 2;
(iii) 6 zeroes with |z| < 3.

(b) (5 pt) For cases (ii) and (iii), show that all zeroes are different.

(a) We will apply Rouché’s Theorem 1.6 (p. 181 of Lang) with respect to three different
polynomials.

(i) Set g(z) = 10 and let |z| = 1. We get the following:

|f(z)− g(z)| = |z6 − 5z4| ≤ |z|6 + 5|z|4 = 1 + 5 < 10 = |g(z)|

It follows that we may apply Rouché and we conclude that f(z) and g(z) have the
same number of roots in |z| < 1 i.e. f(z) has no roots in |z| < 1.

(ii) Set g(z) = −5z4 and |z| = 2. We get the following:

|f(z)− g(z)| = |z6 + 10| ≤ |z|6 + 10 = 74 < 80 = 5 · 24 = |g(z)|

It follows that we may apply Rouché and we conclude that f(z) and g(z) have the
same number of roots in |z| < 2 i.e. f(z) has four roots in |z| < 2.

(iii) Set g(z) = z6 and |z| = 3. We get the following:

|f(z)−g(z)| = |−5z4+10| ≤ 5|z|4+10 = 415 < 729 = 810−81 = 9·81 = 36 = |g(z)|

It follows that we may apply Rouché and we conclude that f(z) and g(z) have the
same number of roots in |z| < 3 i.e. f(z) has six roots in |z| < 3.

(b) We need to prove that the roots of f(z) have multiplicity one, i.e. want to prove that
f ′(z) = 6z5 − 20z3 has no roots in common with f(z). Solving f ′(z) = 0 we see that

z3 = 0 or 6z2 − 20 = 0 i.e. z = 0 or z = ±
√

10
3

. Since f(0) 6= 0 we only need to check

that f(±
√

10
3

) 6= 0.

f(±
√

10

3
) = (

10

3
)3 − 5(

10

3
)2 + 10 =

103 − 5 · 3 · 102 + 27 · 10

27
= −230

27
.

It follows that f(±
√

10
3

) 6= 0 and we conclude that the roots of f are simple.

Exercise 5 (25 pt): Prove that the integral∫ ∞
−∞

(
sinx

x

)3

dx

converges and compute it.
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Hint: As one possibility is to consider the integral of the function
eiz

z3
over

an appropriate closed path and prove that∫ ∞
ρ

sinx

x3
dx =

1

ρ
− π

4
+O(ρ), ρ→ 0,

from which one can deduce∫ ∞
ρ

sin 3x

x3
dx =

3

ρ
− 9π

4
+O(ρ), ρ→ 0.

We will consider f(z) = eiz/z3. Let R > 1 and ε < 1. We take the contour consisting of
a large semicircle (in the upper halfplane) CR from R to −R, a small semicircle (in the
upper halfplane) cε from −ε to ε and two linesegments L1 and L2 from ε to R and from
−R to −ε. In the upper half plane we have |eiz| ≤ 1, thus∣∣∣∣∫

CR

f

∣∣∣∣ ≤ 1

R3
πR→ 0 as R→∞.

For the small semicircle we will have to rewrite f in a convenient way, namely

f(z) =
1

z3
+

i

z2
− 1

2

1

z
+
eiz − 1− iz + 1

2
z2

z3

The term on the right extends to a continuous function, let’s call it h, thus∣∣∣∣∣
∫
cε

eiz − 1− iz + 1
2
z2

z3

∣∣∣∣∣ ≤ max
cε
|h| · πε ≤ max

|z|≤1
|h| · πε = O(ε)

The remaining terms are simply a matter of filling in the path εeit from π to 0, and
integrating the terms, yielding∫

cε

(
1

z3
+

i

z2
− 1

2

1

z

)
dz =

∫ 0

π

(
iε−2e−2it − ε−1e−it − 1

2
i

)
dt

=
1

2
ε−2e−2it + ie−it +

1

2
iε−1t

∣∣∣∣π
0

= i
π

2
− 2iε−1.

Now the residue theorem (or Cauchy’s theorem) implies that

lim
R→∞

(∫ −ε
−R

eix

x3
dx+

∫ R

ε

eix

x3
dx

)
+ i

π

2
− 2iε−1 +O(ε) = 0.

The substitution x→ −x for the first integral yields∫ ∞
ε

sin(x)

x3
dx = −π

4
+

1

ε
+O(ε)

The substitution x→ x/3 yields∫ ∞
ε

sin(3x)

x3
dx =

∫ ∞
3ε

sin(x)
1
27
x3

1

3
dx

= 9

(
−π

4
+

1

3ε
+O(3ε)

)
= −9π

4
+

3

ε
+O(ε).
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We have the identity (2i)3 sin3(x) = e3ix − 3eix + 3e−ix − e−3ix = 2i sin(3x) − 6i sin(x),
thus ∫ ∞

ε

(
sinx

x

)3

dx =
3π

8
+O(ε).

The limit ε → 0 clearly exists, which proves the convergence (another argument for this
is that the integrand is O(x−3) as |x| → ∞ and can be continuously extended around
x = 0). Using the fact that the integrand is even gives∫ ∞

−∞

(
sinx

x

)3

dx =
3π

4
,

Bonus Exercise (10 pt): Let a function f : C → C be continuous. Sup-
pose moreover that f is analytic for both Re z > 0 and Re z < 0. Prove
that f is analytic on C.

It suffices to prove that f is analytic in z = 0 (by translation). Now let us define

g(z) =

∞∑
n=0

anz
n with an =

1

2πi

∮
|z|=1

f(w)

wn+1
dw.

This definition feels natural: g should equal f , provided that f really is analytic. The
expression is being used in the proof of the theorem about removable singularities (p.
165), so this seems a fruitful approach. The continuity of f ensures that the integrals
defining the an are well-defined, and also that f attains a maximum on every compact
set. Hence for |z| < 1

∞∑
n=0

|anzn| ≤
1

2π
2π max
|w|=1

|f(w)|
∞∑
n=0

|z|n = max
|w|=1

|f(w)| 1

1− |z| <∞.

We conclude that g defines an analytic function on the open unit disc, furthermore by
uniform convergence

g(z) =
1

2πi

∮
|w|=1

f(w)

w

∞∑
n=0

( z
w

)n
dw =

1

2πi

∮
|w|=1

f(w)

w − z dw

for |z| < 1. Notice that one can recognize Cauchy’s integral formula in this expression, if
f is indeed analytic.

Now fix a z in the open unit disc that is not purely imaginary. Let 0 < ε < π
2

. We choose
an 0 < η ≤ ε such that |Re(z)| > η. Now devide the path |z| = 1 in four circle segments:
C1 from −ieiη to ie−iη, followed by C2 to ieiη, followed by C3 to −ie−iη, followed by C4.
The line segments from ie−iη to −ieiη and −ie−iη to ieiη are referred to as L1 and L2

(respectively). For notational convenience define I(w) = f(w)/(w − z) and define M as
the maximum of |I| on the unit circle. Notice that

2πig(z) =

∮
C1+C2+C3+C4

I =

∮
C1+L1

I +

∮
C3+L2

I +

∫
C2

I +

∫
C4

I −
∫
L1

I −
∫
L2

I
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By the residue theorem the integrals over C1 + L1 and C3 + L2 (combined) contribute
2πif(z). The integrals over C2 and C4 are less then or equal to 2εM . By making η smaller
(if necessary) we can arrange that

max
w∈L1

|I(w)− I(w − 2 sin(η))| ≤ ε.

To see why this is true, suppose it isn’t. Then for every integer m ≥ 1/η there exists
a wm ∈ L1 such that |I(wm) − I(wm − 2 sin(1/m)| ≥ ε. Since L1 is compact we find
a convergent subsequence wmj . However, |I(wmj ) − I(wmj − 2 sin(1/mj)| goes to 0 as
j →∞ (by continuity) while it should be ≥ ε, a contradiction. We infer that∣∣∣∣∫

L1

I +

∫
L2

I

∣∣∣∣ =

∣∣∣∣∫
L1

(I(w)− I(w − 2 sin(η)))dw

∣∣∣∣ ≤ ε.
Therefore we have proved that |g(z) − f(z)| ≤ (4M + 1)ε/(2π) for all 0 < ε < π

2
, hence

equals 0. Since z was arbitrary, we conclude that f = g on an open set. Analytic con-
tinuation, combined with the fact that the continuous extension to the imaginary axis is
unique, finishes the proof.

Alternative. According to the reverse of Goursat’s theorem, i.e. Theorem 3.2 (p. 108),
f is analytic if the integral of f over any rectangle is 0. Obviously, the integral of f
along a rectangle that does not intersect the imaginary axis is 0, by Cauchy’s (or residue)
theorem. Suppose D is a rectangle that is divided into two rectangles by the imaginary
axis. Without loss of generality D is the rectangle with vertices 1, 1 + i,−1 + i,−1. Let
0 < ε < 1 and take 0 < η ≤ ε. Now we divide D into four paths, a line segment L2 from
η + i to −η + i, a line segment L4 from −η to η, and the two paths connecting them by
L1 (positive real part) and L3. The line segments from η + i to η and −η to −η + i are
denoted by L5 and L6 respectively. We have∮

D

f =

∮
L1+L5

f +

∮
L3+L6

f +

∫
L2

f +

∫
L4

f −
∫
L5

f −
∫
L6

f.

Denote by M the maximum of |f | on D. We know that the integral of f over L2 and
L4 are ≤ 2Mε. By Cauchy’s theorem (or the residue theorem) the integrals over L1 + L5

and L3 + L6 are zero. By making η smaller (if necessary) we can arrange that (see above
solution)

max
w∈L5

|f(w)− f(w − 2η)| ≤ ε.

Hence ∣∣∣∣∫
L5

f +

∫
L6

f

∣∣∣∣ =

∣∣∣∣∫
L5

(f(w)− f(w − 2η))dw

∣∣∣∣ ≤ ε.
We conclude that the integral of f over D is ≤ (4M + 1)ε for all 0 < ε < 1, hence is 0.

(The case where an edge of D coincides with the imaginary axis is treated in a similar

fashion.)
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