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Exercise 1 (10 pt): Let o, 3,7 be three different complex numbers satis-
fying

B—a a—n

y-a B-vy

Prove that the triangle with vertices {«, 3,7} is equilateral, i.e.

B—al=|y—al=]8—-1|

Solution 1: Both the property that «, 3, are the vertices of an equilateral triangle and
the property that they satisfy

f-a_a—ny

y—a B-vy
are invariant under translations, therefore we may take v = 0 without loss of generality.
Both properties are also invariant under rotations and rescaling (i.e. a multiplication by
some complex number C). Therefore we may take v = 1 without loss of generality. We
are then left with

-1
B= B_1-
This yields the quadratic equation 8% — B+ 1 = 0, which has the solutions ™3 and
e~ ™/3 Indeed {0, 1,eT™/3} defines an equilateral triangle.

Solution 2: The given equality implies that two angles (at o and ) in the triangle are
equal: vy

B—

¥
b —a
[0
To see this, use the geometric interpretation of the division. Rewriting the equality as

P=—v _n-«

a—vy f[-«

shows that the angles at v and « are also equal. So all angles are equal, implying that the

triangle is equilateral.



Exercise 2 (10 pt): Find all entire functions f such that |f/(z)| < |f(2)]
for all z € C.

Let f be such a function. It follows from the strict inequality that f cannot have zeros.
Therefore the function f’/f is a well-defined entire function. In particular, it is bounded
by 1. By Liouville’s theorem this implies that f’/f is a constant function. Thus there
exists a constant ¢ € C such that f’ = ¢f. Then we must conclude that f(z) = be®*, where
le] <1 and b= f(0) € C is arbitrary.

Exercise 3 (15 pt): Consider the polynomial equation
a2+ ap 12" P4+ F+aiz+ay=0
with real coefficients a; € R satisfying
ag > ap > az > ---=>ap>0.

Prove that this equation has no roots with |z| < 1.

Suppose z is a root of anz" +...4+ap with |z| < 1. Then it is also a root of (z —1)(anz" +
..t a0) = anz" Tt + (an—1 —an)z™ 4+ ...+ (a0 — a1)z — ap. But then we obtain the
contradiction
ap = |anz"Jrl + (an—1—an)2" + ...+ (a0 — a1)2|
< anlz]™" + (an_1 —an)|z[" + ...+ (a0 — a1l

< anlzl + (an—1 —an)|z| + ... + (a0 — a1)|z] = aolz| < ao.

We must conclude that all roots of a,z™ + ...+ ag have |z| > 1.

Remark: This approach is inspired by summation by parts. Define a,+1 = 0 for conve-
nience. Partial summation yields

n
1

anz”+...+ao:Z(akfak+1)(zk+zkf +...+2+41)
k=0
1 n
=1 Z(ak — ak+1)(zk+1 -1).

k=0

One can now get the idea to multiply the original polynomial by z — 1, as is done in the
above solution. Alternatively, one can notice that for any |z| < 1

n n
Re (Z(ak —ap) (2" — 1)> = Z lak — ar1|Re(z"TH —1) <0,
k=0 k=0
impying that >7_,(ax — ap41)(z* — 1), and hence a, 2™ + ... + ao, cannot be 0.
There is yet a different interpretation of the calculations before this remark: They basically

show that
[(z = 1)(anz" + ...+ a0) — (—ao)| < | — ao|



on any circle |z| = r < 1. It then follows from Rouché’s theorem that (z—1)(anz"+. . .+ao),

and thus a,z" + ... + ao, has no roots with |z| < 1.

Exercise 4 (20 pt): Let f be a meromorphic function on C. Suppose there
exist C, R > 0 and integer n > 1 such that |f(z)| < C|z|" for all z € C with
|z| > R.

a. (10 pt) Prove that the number of poles of f in C is finite.

We exclude the trivial case f = 0. First we prove that f cannot attain infinitely
many zeros in the disc |z| < R, a result we will need later. So suppose f has
infinitely many zeros in this disc. Of course this allows us to find a sequence of
zeros of f in |z| < D. Then by compactness of the disc there exists a convergent
subsequence with some limit p in |z| < D. By continuity p must also be a zero of
f (it cannot have a pole there, this is because in some neighborhood of p we would
then have | f(z)| > C|z — p|™™ for some positive numbers C' and m). However, p is
then an accumulation point of a sequence of zero’s of f, thus (by Theorem 3.2b, p.
62) f has a power series equal to 0 in a neighborhood of p. By analytic continuation
f =0, a contradiction. We must conclude that f has only finitely many zeros.
Now suppose f has infinitely many poles. By the same reasoning as above we
can find a convergent sequence of poles of f converging to some limit q. Suppose
f has a zero of multiplicity m > 0 in z = gq. Then (2 — ¢)™/f extends to an
analytic function in some neighborhood of g, using the fact that f has only finitely
many zeros. Exactly analogous to the above this leads to a contradiction. Thus
we conclude that f has only finitely many poles in |z|] < R. By the inequality
|f(2)] < C|z|™ we know that f cannot have poles for |z| > R.

b. (10 pt) Prove that f is a rational function, i.e. it can be written as a
ratio of two polynomials.

Let P be a polynomial containing all the poles (counted with multiplicity) of f.
Then Pf extends to an entire function g that satisfies |g(z)| < Clz|" for some
number N (the sum of the orders of the poles minus n). Then, for k¥ > N we have
using the generalization of Cauchy’s Integral Formula that

k! (2) k'CrNonmr -
(k) 9 N—k
" (0)| = o7 /\z\:r s, dz| < T = 2rk!Cr

for any r > R. Thus we see, by taking the limit r — oo, that all coefficients of f

vanish for £ > N, i.e. g is a polynomial. This implies that f is a rational function.

Exercise 5 (25 pt): Let a > 0. By integrating the function

f() = - !

2 cos(2mia) — cos(27z)




over a suitable closed path, show that

et 1 2ra _ ,—2ma

Z T (& e
a? + n2 a e2ma + e—2ma _ 2'

n=—oo

Hint: Use a square path.

Take the square with vertices m =+ im, with m an odd natural number divided by 2. On
both its horizontal edges, t &= im, we have

1 )
| cos(2mia) — cos(2mz)||z| = |562ﬁmei2”” + ... lz| > Cme®™
for some constant C'. Thus the absolute value of these integrals is smaller than or equal

to 2m/(Cme*™™) = 2/C - e~ ™™ which converges to 0 as m — oo.
For the right vertical edge, m + imt, the corresponding integral equals

/1 1 idt
_; cosh(2mwa) 4+ cosh(2rmt) 1 + it

For every ¢ > 0 we have

1 .
lim / 1 Zdt. < lim 1 1 _
m—oo | . cosh(2ma) + cosh(2mmt) 1 + it | — m—oo cosh(27a) + cosh(2mme) /1 + €2

This is of course also true for the part from —1 to e. For the middle part we have

2¢
~ cosh(27ma) + 1

/ 1 idt
cosh(2ma) + cosh(2rmt) 1 + it
We must conclude that

1 idt

2e
I
mess0 ‘/ 1 cosh(2ma) + cosh(2rmt) 1 + it

~ cosh(2ma) + 1

<e€

for any € > 0, hence the right vertical integral tends to 0 as m — oco. The case of the left
vertical integral is analogous.

We are now left with the residue at 0 and the residues at +ia+n. By the Residue Formula
we get

[e’s}

1 S 1 L, 1
cosh(2ma) —1 2rsin(27(ia + n)) ia+n = 2wsin(2n(—ia +n)) —ia +n

n=-—oo
_ 1 i —ia+n — (ia +n)
"~ —2misinh(2wa) 4 a? +n?
~ nsinh(2ma) et +n?
This implies that
i I m sinh(2ma) 7w 2™ — g7 2ma
L a? +n? " acosh(2ma) — 1 ae27a 4 e—2ma —2°



Bonus Exercise (20 pt): Find all entire functions f such that

for all z € C.

Solution 1: Suppose f is not identically zero. We can write f(z) = z™g(z) for some
analytic function g with g(0) # 0. We notice that g must also satisfy g(z?) = g(z)?. For
all z in the unit disc we have

0 |g(0)] = lim |g(z*")| = lim |g()]*".
n—oo n—oo

This limit can only exist and not be equal to 1 if |g(z)| = 1 for all z in the unit disc. By
the maximum modulus principle this implies that g is constant. In fact g(0) = g(0)?, so
we must conclude that g = 1. We conclude that the full solution set is given by f = 0 and
f(z) = 2™, m a non-negative integer.

Solution 2: Again we write f(z) = z2™g(z). When €' is a maximum for g on the

closed unit disc, so is e**/2. Thus the sequence (e¢¢>-2*”)n yields maxima of g. By con-
tinuity of |g| a maximum must also be attained in z = 1. We know that g(0) = g(0)?
and g(1) = g(1)?>. The only possibillity is g(0) = g(1) = 1. By the maximum modulus
principle g is identically one.

Solution 3: Again we write f(z) = 2™g(z). Since g(0) # 0 we can find an open ball on
which g is non-zero. On this open ball we can define the analytic function

@) =e (g [ 56)

as is done on p.123. We notice (by induction) that

n @") n
9(2) = a(*) = 10) + 02

for all n. This implies that g cannot have a term of smallest positive power in its power

series expansion, i.e. it is constant.



