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Exercise 1 (10 pt): Determine all entire functions f such that

(f()* + (f(2)* =1

for all z € C.

Solution. Taking the derivative, we find
0=2f(2)f"(2) +2f (2)f"(2) = 2f (2)(f(2) + " (2))-

If g(z)h(z) = 0 on an infinite compact set, then the zeroes of g or h form an infinite set
with a point of accumulation. If g and A are moreover analytic, then ¢ = 0 or h = 0.
We conclude that f' = 0 or f + f” = 0. In the first case, f is constant; hence f = 1
or f = —1. In the second case, we know (e.g., by Exercise 6 in §I1.6) that there is a
unique solution with given initial conditions. Of course cos(z) and sin(z) are solutions,
so f(z) = acos(z) + bsin(z) is the unique solution with f(0) = a and f’(0) = b. Finally,
a cos(z) 4+ bsin(z) satisfies the original equation if and only if @ and b are complex numbers
with a®4+b* = 1. Answer: f =1or f = —1 or f(z) = acos(z)+bsin(z), with a®+b* = 1.

Exercise 2 (10 pt):

a. (5 pt) Let f: C — C be a doubly periodic function, i.e., there exist
x1, 22 € C*, no real multiples of each other, such that

f(z) = fz+z1) = f(z + 22)

for all z € C. Suppose that f is analytic. Show that f is constant.

Solution. Let K be the parallelogram with vertices 0, 1, z2 and x1 + x2, i.e.,

K:{z:tlml +t21‘2|0§t1,t2§1},

From the double periodicity, it follows that for all z € C there exists w € K with f(w) =
f(2) (note that K and its translates over integral linear combinations of z1 and 2 tile the
plane). Since f is continuous and K is compact, f is bounded on K. Hence f is bounded.

By Liouville’s theorem, we conclude that f is constant.



b. (5 pt) Determine all entire functions f such that the identities

flz+1)=if(z) and  f(z+1i)=—f(2)
hold for all z € C.

Solution. Note that f(z +4) = if(z +3) = --- = i*f(2) = f(2) and f(z + 2i) =
—f(z+14) = f(z) for all z € C. Hence f is doubly periodic and by part (a), f is constant:

f = ¢ for some ¢ € C. Since ¢ = ic, we find that f is identically equal to zero.

Exercise 3 (20 pt):
Prove that the following integrals converge and evaluate them.

1 ® r—sinx

. (1 — b. (1 —_—
a. (10 pt) /0 (@7~ cmif)? dx (10 pt) /0 = dx

Solution of part (a). Convergence follows from an estimate like |2* —e™"/?3| > |_x2 -1 >
x%/2 for > 2. Note that the integrand is even. We integrate f(z) = 1/(z% — e™/?)? over
a contour consisting of the segment from —R to R and the counterclockwise semicircle
S(R) around 0 from R to —R, for R > 1 large enough. Note that |22 — e™/3| > R? — 1
when |z| = R, so |fS(R) f(2)dz| < wR/(R* —1)?, so fS<R) f(z)dz — 0 as R — oo. Next,

the poles of f are at the points z with 22 = €™/ e, at z = ie”/ﬁ; the only pole in the

upper half plane is at o = e”/ﬁ, inside the contour. Now

1 ) 2 1
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It follows that [ m do = =2m = T g0 [ m do = -

Solution of part (b). The integrand can be continuously extended to the origin. Con-
vergence at infinity follows from an estimate like |(z — sinz)/z%| < 2/2® for z > 1. Let
f(z) = (iz — €*)/2". For 0 < e < R, we have [ [ f(z)dz = feR(ix +e7 ™) /x3 dx, so

Qi/R(m—sinx)/$3 dr = /R(Qix—em +e ") /a2’ do =
‘ R ) ‘ R ) R —e
/ (ixfe”)/a:deJr/ (ix+eﬂz)/x3dm:/ f(z)dx + f(z)dx.
€ € € -R

We integrate f over a contour consisting of segments from —R to —e and from € to R and
semicircles around 0 in the upper half plane from —e to € and from R to —R. The integral
over the contour is zero. The integral over S(R) goes to zero as R — oo, since |e**| < 1
for z in the upper half plane. The integral over the counterclockwise semicircle S(e) can
be evaluated by means of integration by parts:
T
e 2Jso #

/ iz—eizdz_iliz—eiz
s & T2 22




As e — 0, the limit equals

%m’(fi-i)fllim(_le_e o )

e—0 62 62

1 . 1. 1 . . 1, .2 . . 1, . 1 .
:§m—§ll§(1)€—2(—ze—l+ze—§(ze) —ze+1+ze+§(ze) ):Em.

Hence the limit as R — oo and € — 0 of the integral of f(z) over the two segments equals

smioand [ SR dop = Swif(20) = 7 /4.
Exercise 4 (10 pt): Let f: C — C be defined by:

1
e A4 if z £0;
£l) = 7
0 if z=0.
a. (5 pt) Show that f satisfies the Cauchy-Riemann equations on the
whole of C.

Solution. Since f is holomorphic on C\{0}, it satisfies the C-R equations there. Next,
note that if z is real or imaginary, then z* is real, so f is real along the real and imaginary
axes. S0 v5(0,0) = vy(0,0) = 0 and u,(0,0) = lim, .o W = limz_,o(e_l/z4)/x =
0= 1imyao(e*1/y4)/y = limy o % = u,(0,0), hence the C-R equations hold at the
origin as well. (We used that (iy)* = y*.)

b. (5 pt) Is f analytic? Motivate your answer.

in/4 4

Solution. Taking z = te’™*, we have z* = —t* so limy—¢ f(2) = 400, so f is not even
continuous at 0. Alternatively, the restriction of f to C\{0} admits a Laurent expansion
at 0 with infinitely many negative terms, so 0 is an essential singularity of the restriction,

not a removable one.

Exercise 5 (10 pt):
Let f be an entire function that sends the real axis to the real axis and the
imaginary axis to the imaginary axis. Show that f is an odd function.

Solution. First, f(0) € RN iR, so f(0) = 0. Put g(z) = f(z) + f(—%); we need to
show that g = 0. The power series expansion for g at 0 is of the form ) 77, agkz?* and
converges everywhere. Assume that g # 0; let m > 0 be minimal such that azm, # 0.
Then g(z) = a2m2z>™(1 + h(z)), where h(z) is a convergent power series without constant
term, thus |h(2)| is small for |z| small enough. In particular, | arg(1l+ h(z))| is small for |z|
small enough. Substituting z = r with r a small nonzero real number, we find that azn, is
approximately real; but substituting z = ir, we find that as., is approximately imaginary.

This is a contradiction, so g = 0, so f is odd. (Approximately real means az, = Re'®



with —t < ¢ < torm—1t < ¢ < 7+t for some small ¢t > 0; approximately imaginary
means asn, = Re'® with 7/2 —t < ¢ < m/2+tor 3m/2 —t < ¢ < 3m/2+1.)

Exercise 6 (20 pt):

Let U C C be a connected open set. Let {f,} be a sequence of complex
functions on U which converges uniformly on every compact subset of U
to the limit function f. (Le., for every compact subset K of U, {f,|K}
converges uniformly on K to f|K.)

a. (45 pt) Give an example where the f, are injective and holomorphic,
but f is constant.

Solution. Take f,(z) = z/n, for example. Then f = 0. Given K compact, there exists
R > 0 such that |z| < R for all z € K. So for n > N := R/e we have that || f, — f||x <e.

Moreover, the f, are injective and holomorphic, but f is constant.

b. (5 pt) Give an example where the f,, are injective and (real) differen-
tiable, but f is neither constant nor injective.

Hint: When is z — z 4 aZ injective? Holomorphic?

Solution. We note that z — z + aZ is holomorphic exactly when a = 0. Assume 21 # 22.
They have the same image when (z1 — 22) + a(z1 — z2) = 0. This implies |a| = 1 and,
conversely, when |a| = 1, there exist z1 # 22 with the same image. So z +— 2z + aZ is
injective exactly when |a| # 1. Take f,(z) = z 4+ (1 + 1/n)z, converging uniformly on
compact subsets to f(z) = z + zZ. Then the f, are injective and real differentiable, but f

is neither constant nor injective.

c. (10 pt) Prove: if the f,, are injective and holomorphic, then f is either
constant or injective.

Hint 1: Reduce the problem to the following special case: If f(zy) =
f(z1) =0, with z9 # z1, and fn(20) =0 for all n, then f =0.

Hint 2: Now look at the orders of f and the f, at z1.

Solution. Suppose f is not injective. Then there exist zo # z1 with f(z0) = f(z1).
Assume f, — f, uniformly on compact subsets. Then f,(z0) — f(20). Subtracting
fn(20) from f,, and f(z0) from f, we may assume f(20) = 0; and the new f,, converge to
the new f, uniformly on compact subsets. We know f(z0) = f(z1) = 0 and should prove
f = 0. This accomplishes the suggested reduction.

Suppose that f # 0. Then f is not locally constant near zi, since U is (open and)
connected. So the order of f at 21 is positive, say m > 0. Then we know that there exists
a suitable local coordinate w at z1 such that f(w) = w™ in a neighborhood V' C U of z;.



Choose r > 0 so that the closed disc D = {|w| < r} is contained in V' and doesn’t contain
z0. Choose € > 0 with € < ™. Choose n such that ||f. — f||p < €. Rouché’s theorem
gives us that f, and f have the same number of zeros inside {|w| = r}, i.e., at least m
when counted with multiplicity. So f, has a zero other than zp, contradicting injectivity.
This proves that f = 0.

Alternatively, staying closer to the second hint, z1 is an isolated zero of f, hence |f(2)|
has a positive lower bound on a small enough circle v around z1, so that 1/f, — 1/f,
fi— f',and f./f. — f'/f, all convergences uniform on ~. Then

L[ fa(z)

i ], )

on the one hand, this equals zero, but on the other hand, it converges to ord., f, which is

dz;

positive, as n — 00; a contradiction again.



