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SOLUTIONS RETAKE COMPLEX FUNCTIONS
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Exercise 1 (15 pt): Determine all entire functions f such that

(f()? = (f(2)* =1

for all z € C.

Solution. Taking the derivative, we find
0=2f(2)f"(2) = 2f"(2)f"(2) = 21 (2)( () — [ (2)).

If g(z)h(z) = 0 on an infinite compact set, then the zeroes of g or h form an infinite set
with a point of accumulation. If g and A are moreover analytic, then ¢ = 0 or h = 0.
We conclude that f' = 0 or f — f” = 0. In the first case, f is constant; hence f = 1
or f = —1. In the second case, we know (e.g., by Exercise 6 in §II.6) that there is a
unique solution with given initial conditions. Of course exp(z) and exp(—z) are solutions,
so f(z) = aexp(z) + bexp(—2z) is the unique solution with f(0) = a+b and f'(0) = a — .
Finally, aexp(z) + bexp(—z) satisfies the original equation if and only if a and b are
complex numbers with 4ab = 1. Answer: f =1or f = —1 or f(z) = aexp(z) + bexp(—2z),
with 4ab = 1.

Exercise 2 (30 pt):
Prove that the following integrals converge and evaluate them.

a. (15 pt) /000(13 dx b. (15 pt) /0

z2+1)

> logx d
—— dx
4 +1

(Hint for (b): Use a contour consisting of two semicircles and two segments
and use an appropriate definition of the complex logarithm.)

Solution of part (a). The integrand is continuous on R and convergence at infinity
follows from 1/(z? 4-1)® < 1/2?. Note that the integrand is even. We integrate f(z) =
1/(2%41) over a contour consisting of the segment from — R to R and the counterclockwise
semicircle S(R) around 0 from R to —R, for R > 1 large enough. Note that |2*+1| > R*—1
when |z| = R, so |fS(R) f(2)dz| < 7R/(R* —1)3, so fsm) f(z)dz — 0 as R — oo. Next,
the poles of f are at the points z with 2% = —1, i.e., at z = =i; the only pole in the upper
half plane is at i, inside the contour. Now, from the Taylor expansion at z = i,

Resi(f) = Resi7— 1)31(2 i : <(z +1 i)?’)” e ; (ﬁ) -

_1
T2

z=1

(Z + Z)s z=1 B



dx __ 671 — 571' 3

It follows that [~ - W = , SO fo = 2+1>3 do = 3%,

Solution of part (b). Near zero, the integrand is bounded in absolute value by —logz
1

and fol —logzdx = (x —xzlogx)| =1, since limy—oxlogz = 0, so the integral converges
0
near zero. Convergence near infinity follows from an estimate like |(logz)/(z* +1)| < 1/2®

for z > 1. Following the hint, we take a contour consisting of the counterclockwise
semicircle S(R) around 0 from R to —R, for R > 1 large enough, the clockwise semicircle
—5S(8) around 0 from —§ to §, for 0 < § < 1/2 small enough, and the segments from
—R to —§ and from § to R. Let f(z) = (logz)/(z* 4+ 1), where we take the (branch of
the) complex logarithm on C \ iR<( that continues logz for x > 0, i.e., for z = r exp(i¢)
with r > 0 and —7/2 < ¢ < 37/2 we have logz = logr + i¢. Then f:; fydy =y =
—z, dy = —dz, logy = logz + in| = féR (logz + im)/(z* + 1) da.

Now [gpy [(2)dz = [ 7aesfbie iR expl(io) dqb, 50 | [ f(2) dz| < TRIET, which

goes to 0 when R — oo. Similarly, f5(5)f = Iy 64iii?;;“§+lzéexp(z¢) d¢, so

‘fs z)dz| < w618 (|log 8| + ), which again goes t00a35—>0

The 1ntegrand has s1mple poles at the four zeroes of 2+ 1. Put o = exp(im/4), then the

poles in the upper half plane are at o and at o®. Now Resa(f) = (log @) lim, 4 j%_f‘l =
5 : 7

im/dy = 8 = =22 and Res,s(f) = (log(a®)) lim, _, o3 ﬁ = 3in/doy = 3T =

’3%"3, so the sum of the residues equals T (—a — 3a®) = Z(—(141)/v2 — 3(—

i)/V2) = 16\f( 1—i4+3—-3i) = 16\F(2 — 4i). The integral to be computed equals

2 2
1/2(2mi) (252 = — 5 = — T2,
Along the way, we have also computed [ 4+1 dr = (2mi) 16\[( 47) = 7 '”24‘/5,

which also can be computed more directly, of course.

Exercise 3 (15 pt): Let f: C — C be an entire function. Assume that
f(1) =2f(0). Given € > 0, prove that there exists z € C with |f(z)| < e.

Solution. Let € > 0 be given and assume there is no z € C with |f(z)] < e. Then
f certainly doesn’t have zeroes. It follows that f is not constant, for the only constant
function f with f(1) = 2f(0) is the zero function. Also, g(z) = 1/f(z) is entire; and
lg(z)] < 1/e for all z € C, so g is bounded and entire, hence constant by Liouville’s

theorem; but then f is constant and we have reached a contradiction. Q.E.D.

Exercise 4 (15 pt): Consider the polynomial function f(z) = 23+ A22+ B,
where A and B are complex numbers. Assume that the following inequalities
hold:

|A|+1 < |B| < 4]A] - 8.

a. (10 pt) Determine the number of zeroes (counted with multiplicities)
of f(z) with |z| <1 and also the number of zeroes (with multiplicities)
of f(z) with |z| < 2.



Solution. We apply Rouché’s theorem. Note that |A| > 3, so |B| > 4. With g(z) = B,
f(z) = g(2) = 2° + A2%, so when [z = 1, |f(2) — g(2)| < [A]+1 < [B| = [g(2)], s0 f(2)
and g(z) have no zeroes when |z| = 1 and f(z) and g(z) have the same number of zeroes
in {|z] < 1}, i.e., none, since B # 0. So f(z) has no zeroes with |z| < 1.

Next, with g(z) = Az> + B, f(z) — g(z) = 2%, so when |z| = 2, |f(2) — g(z)| = 8 <
4|A| —|B] < |g(2)], so f(z) and g(z) have no zeroes when |z| = 2 and f(z) and g(z) have
the same number of zeroes (with multiplicities) in {|z|] < 2}, i.e., two, since |B| < 4|A]
and |A| > 0, so |[B/A| < 4, so | £ /—B/A| < 2. So f(z) has two zeroes with |z| < 2,

counted with multiplicity.

b. (5 pt) By finding the zeroes of 23 — 322 + 4, show that these numbers
of zeroes (with multiplicities) may be different when

Al +1=|B| = 4/4] - 8.

Solution. Trying for rational solutions, we recall that these should be integers dividing
4; we see that —1 and 2 are zeroes. The sum of all three zeroes equals 3, so 2 is a double
zero. So the number of zeroes with |z| < 1 equals one and the number of zeroes (with
multiplicities) with |z| < 2 equals three. (Of course A = —3 and B = 4 satisfy the two
equalities.)

Another way to find the solutions is to try for a double zero; it should satisfy 3z? = 6z,
which leads to z = 2.

Yet another way is to realize that the ‘extra’ zeroes should have absolute values 1, respec-
tively 2. Since there is at least one real zero, one tries £1 and £2 and solves the remaining

equation (of degree < 2) if necessary.

Exercise 5 (15 pt): Let f be an entire function that sends both the real
axis and the imaginary axis to the real axis.

a. (9 pt) Give an example of such a function for which in addition the
following two properties hold:

(i) f is surjective;

(if) f(R) N fER) = {f(0)}.

Solution. An example is f(z) = 2°. Then f(R) = Rsq and f(iR) = R<q. Also,
F(\/rexp(ip/2)) = rexp(ig), so f is surjective. Another example is f(z) = —102°, etc.

b. (10 pt) Prove that no function satisfying the original hypotheses is
injective. (Le., you should prove: if f is entire and f(R) C R and
f(ER) C R, then f is not injective.)



Solution. Since f(0) € R, we can replace f by f — f(0), i.e., we may and will assume
f(0) = 0. (Segments of) the real axis and the imaginary axis form examples of two curves
through the origin with angle 7/2. By Theorem 1.7.1, we know that if f'(0) # 0, then the
angle between f(R) and f(iR) at f(0) = 0 also equals /2. But f(R) and f(:R) are both
contained in R, so the angle is not 7/2, so f'(0) = 0. From Theorem I1.6.4, it now follows

that f is not injective on any open neighbourhood of the origin.

Bonus Exercise (15 pt): Assume that f is analytic in the punctured disc
{z € C|0 < |z| < R} of radius R > 0 and that the isolated singularity of
f at z = 0 is not removable. Prove that g(z) = exp(f(z)) has an essential
singularity at z = 0.

Hint: There are two cases: f has a pole at z = 0 or an essential singularity.
When f has a pole, use a suitable local coordinate.

Solution. If f has a pole at z = 0 of order m > 1, then h = 1/f has a zero at z = 0 of
order m. We then know that there exists a local analytic coordinate w in a neighbourhood
of 0 such that h(w) = w™. Then f(w) = 1/w™ and g(w) =Y o2 ;w™ ™" /nl. This is the
Laurent expansion (in w) of g near 0; it has infinitely many negative terms, so g has an
essential singularity at w = 0, i.e., at z = 0.

If f has an essential singularity at z = 0, then by the Casorati-Weierstrass theorem, f(U)
is dense in C for every open neighbourhood U of 0. Then ¢(U) is dense in exp(C) = C\ {0}
(write it out), hence in C, which is more than enough to conclude that g has an essential

singularity at z = 0.



