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Exercise 1 (15 pt): Determine all entire functions f such that

(f(z))2 − (f ′(z))2 = 1

for all z ∈ C.
Solution. Taking the derivative, we find

0 = 2f(z)f ′(z)− 2f ′(z)f ′′(z) = 2f ′(z)(f(z)− f ′′(z)).

If g(z)h(z) = 0 on an infinite compact set, then the zeroes of g or h form an infinite set

with a point of accumulation. If g and h are moreover analytic, then g ≡ 0 or h ≡ 0.

We conclude that f ′ ≡ 0 or f − f ′′ ≡ 0. In the first case, f is constant; hence f ≡ 1

or f ≡ −1. In the second case, we know (e.g., by Exercise 6 in §II.6) that there is a

unique solution with given initial conditions. Of course exp(z) and exp(−z) are solutions,

so f(z) = a exp(z) + b exp(−z) is the unique solution with f(0) = a + b and f ′(0) = a− b.

Finally, a exp(z) + b exp(−z) satisfies the original equation if and only if a and b are

complex numbers with 4ab = 1. Answer: f ≡ 1 or f ≡ −1 or f(z) = a exp(z)+ b exp(−z),

with 4ab = 1.

Exercise 2 (30 pt):
Prove that the following integrals converge and evaluate them.

a. (15 pt)
∫ ∞

0

1
(x2 + 1)3

dx b. (15 pt)
∫ ∞

0

log x

x4 + 1
dx

(Hint for (b): Use a contour consisting of two semicircles and two segments
and use an appropriate definition of the complex logarithm.)
Solution of part (a). The integrand is continuous on R and convergence at infinity
follows from 1/(x2 + 1)3 ≤ 1/x2. Note that the integrand is even. We integrate f(z) =
1/(z2+1)3 over a contour consisting of the segment from −R to R and the counterclockwise
semicircle S(R) around 0 from R to −R, for R > 1 large enough. Note that |z2+1| ≥ R2−1
when |z| = R, so |

R
S(R)

f(z)dz| ≤ πR/(R2 − 1)3, so
R

S(R)
f(z)dz → 0 as R → ∞. Next,

the poles of f are at the points z with z2 = −1, i.e., at z = ±i; the only pole in the upper
half plane is at i, inside the contour. Now, from the Taylor expansion at z = i,

Resi(f) = Resi
1

(z − i)3(z + i)3
=

1

2

„
1

(z + i)3

«′′ ˛̨̨̨
z=i

=
1

2

„
−3

(z + i)4

«′ ˛̨̨̨
z=i

=
1

2

12

(z + i)5

˛̨̨̨
z=i

=
6

32i
=

3

16i
.



It follows that
R∞
−∞

1
(x2+1)3

dx = 6πi
16i

= 3π
8

, so
R∞
0

1
(x2+1)3

dx = 3π
16

.

Solution of part (b). Near zero, the integrand is bounded in absolute value by − log x

and
R 1

0
− log x dx = (x− x log x)

˛̨̨̨1
0

= 1, since limx→0 x log x = 0, so the integral converges

near zero. Convergence near infinity follows from an estimate like |(log x)/(x4+1)| < 1/x3

for x > 1. Following the hint, we take a contour consisting of the counterclockwise
semicircle S(R) around 0 from R to −R, for R > 1 large enough, the clockwise semicircle
−S(δ) around 0 from −δ to δ, for 0 < δ < 1/2 small enough, and the segments from
−R to −δ and from δ to R. Let f(z) = (log z)/(z4 + 1), where we take the (branch of
the) complex logarithm on C \ iR≤0 that continues log x for x > 0, i.e., for z = r exp(iφ)

with r > 0 and −π/2 < φ < 3π/2 we have log z = log r + iφ. Then
R −δ

−R
f(y) dy = [y =

−x, dy = −dx, log y = log x + iπ] =
R R

δ
(log x + iπ)/(x4 + 1) dx.

Now
R

S(R)
f(z) dz =

R π

0
log R+iφ

R4 exp(4iφ)+1
iR exp(iφ) dφ, so |

R
S(R)

f(z) dz| ≤ πR log R+π
R4−1

, which

goes to 0 when R → ∞. Similarly,
R

S(δ)
f(z) dz =

R π

0
log δ+iφ

δ4 exp(4iφ)+1
iδ exp(iφ) dφ, so

|
R

S(δ)
f(z) dz| ≤ πδ 16

15
(| log δ|+ π), which again goes to 0 as δ → 0.

The integrand has simple poles at the four zeroes of z4 + 1. Put α = exp(iπ/4), then the
poles in the upper half plane are at α and at α3. Now Resα(f) = (log α) limz→α

z−α
z4+1

=

iπ/4 1
4α3 = iπα5

16
= −iπα

16
and Resα3(f) = (log(α3)) limz→α3

z−α3

z4+1
= 3iπ/4 1

4α9 = 3iπα7

16
=

−3iπα3

16
, so the sum of the residues equals iπ

16
(−α − 3α3) = iπ

16
(−(1 + i)/

√
2 − 3(−1 +

i)/
√

2) = iπ

16
√

2
(−1 − i + 3 − 3i) = iπ

16
√

2
(2 − 4i). The integral to be computed equals

1/2(2πi) iπ

16
√

2
2 = − π2

8
√

2
= −π2√2

16
.

Along the way, we have also computed
R∞
0

iπ
x4+1

dx = (2πi) iπ

16
√

2
(−4i) = i π2

2
√

2
= iπ2√2

4
,

which also can be computed more directly, of course.

Exercise 3 (15 pt): Let f : C → C be an entire function. Assume that
f(1) = 2f(0). Given ε > 0, prove that there exists z ∈ C with |f(z)| < ε.

Solution. Let ε > 0 be given and assume there is no z ∈ C with |f(z)| < ε. Then

f certainly doesn’t have zeroes. It follows that f is not constant, for the only constant

function f with f(1) = 2f(0) is the zero function. Also, g(z) = 1/f(z) is entire; and

|g(z)| ≤ 1/ε for all z ∈ C, so g is bounded and entire, hence constant by Liouville’s

theorem; but then f is constant and we have reached a contradiction. Q.E.D.

Exercise 4 (15 pt): Consider the polynomial function f(z) = z3+Az2+B,
where A and B are complex numbers. Assume that the following inequalities
hold:

|A|+ 1 < |B| < 4|A| − 8.

a. (10 pt) Determine the number of zeroes (counted with multiplicities)
of f(z) with |z| ≤ 1 and also the number of zeroes (with multiplicities)
of f(z) with |z| ≤ 2.



Solution. We apply Rouché’s theorem. Note that |A| > 3, so |B| > 4. With g(z) = B,
f(z) − g(z) = z3 + Az2, so when |z| = 1, |f(z) − g(z)| ≤ |A| + 1 < |B| = |g(z)|, so f(z)
and g(z) have no zeroes when |z| = 1 and f(z) and g(z) have the same number of zeroes
in {|z| < 1}, i.e., none, since B 6= 0. So f(z) has no zeroes with |z| ≤ 1.

Next, with g(z) = Az2 + B, f(z) − g(z) = z3, so when |z| = 2, |f(z) − g(z)| = 8 <

4|A| − |B| ≤ |g(z)|, so f(z) and g(z) have no zeroes when |z| = 2 and f(z) and g(z) have

the same number of zeroes (with multiplicities) in {|z| < 2}, i.e., two, since |B| < 4|A|
and |A| > 0, so |B/A| < 4, so | ±

p
−B/A| < 2. So f(z) has two zeroes with |z| ≤ 2,

counted with multiplicity.

b. (5 pt) By finding the zeroes of z3 − 3z2 + 4, show that these numbers
of zeroes (with multiplicities) may be different when

|A|+ 1 = |B| = 4|A| − 8.

Solution. Trying for rational solutions, we recall that these should be integers dividing
4; we see that −1 and 2 are zeroes. The sum of all three zeroes equals 3, so 2 is a double
zero. So the number of zeroes with |z| ≤ 1 equals one and the number of zeroes (with
multiplicities) with |z| ≤ 2 equals three. (Of course A = −3 and B = 4 satisfy the two
equalities.)
Another way to find the solutions is to try for a double zero; it should satisfy 3z2 = 6z,
which leads to z = 2.

Yet another way is to realize that the ‘extra’ zeroes should have absolute values 1, respec-

tively 2. Since there is at least one real zero, one tries ±1 and ±2 and solves the remaining

equation (of degree ≤ 2) if necessary.

Exercise 5 (15 pt): Let f be an entire function that sends both the real
axis and the imaginary axis to the real axis.

a. (5 pt) Give an example of such a function for which in addition the
following two properties hold:

(i) f is surjective;

(ii) f(R) ∩ f(iR) = {f(0)}.

Solution. An example is f(z) = z2. Then f(R) = R≥0 and f(iR) = R≤0. Also,

f(
√

r exp(iφ/2)) = r exp(iφ), so f is surjective. Another example is f(z) = −10z6, etc.

b. (10 pt) Prove that no function satisfying the original hypotheses is
injective. (I.e., you should prove: if f is entire and f(R) ⊆ R and
f(iR) ⊆ R, then f is not injective.)



Solution. Since f(0) ∈ R, we can replace f by f − f(0), i.e., we may and will assume

f(0) = 0. (Segments of) the real axis and the imaginary axis form examples of two curves

through the origin with angle π/2. By Theorem I.7.1, we know that if f ′(0) 6= 0, then the

angle between f(R) and f(iR) at f(0) = 0 also equals π/2. But f(R) and f(iR) are both

contained in R, so the angle is not π/2, so f ′(0) = 0. From Theorem II.6.4, it now follows

that f is not injective on any open neighbourhood of the origin.

Bonus Exercise (15 pt): Assume that f is analytic in the punctured disc
{z ∈ C | 0 < |z| < R} of radius R > 0 and that the isolated singularity of
f at z = 0 is not removable. Prove that g(z) = exp(f(z)) has an essential
singularity at z = 0.
Hint: There are two cases: f has a pole at z = 0 or an essential singularity.
When f has a pole, use a suitable local coordinate.

Solution. If f has a pole at z = 0 of order m ≥ 1, then h = 1/f has a zero at z = 0 of
order m. We then know that there exists a local analytic coordinate w in a neighbourhood
of 0 such that h(w) = wm. Then f(w) = 1/wm and g(w) =

P∞
n=0 w−mn/n!. This is the

Laurent expansion (in w) of g near 0; it has infinitely many negative terms, so g has an
essential singularity at w = 0, i.e., at z = 0.

If f has an essential singularity at z = 0, then by the Casorati-Weierstrass theorem, f(U)

is dense in C for every open neighbourhood U of 0. Then g(U) is dense in exp(C) = C\{0}
(write it out), hence in C, which is more than enough to conclude that g has an essential

singularity at z = 0.


