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Exercise 1 (7 pt) Compute

∞
∑

n=0

sin(nt)

n!
(t ∈ R)

Hint: Rewrite the series using the exponential function.

We know that the analytic function ez − e1/z has a Laurent expansion in z = 0 which
converges for |z| > 0. By using the exponential series we find

ez − e1/z =

∞
∑

n=0

zn

n!
−

∞
∑

n=0

z−n

n!
=

∞
∑

n=0

zn − z−n

n!

By substituting z = eit and using the identity eit − e−it = 2i sin t we find

∞
∑

n=0

sin(nt)

n!
=

1

2i

(

eeit − ee−it
)

=
1

2i

(

ecos t+i sin t − ecos t−i sin t
)

= ecos t sin sin t.

Remark: one could also use

∞
∑

n=0

sin(nt)

n!
= Im

( ∞
∑

n=0

eint

n!

)

= Im
(

eeit
)

= ecos t sin sin t.

Exercise 2 (20 pt) Prove that the following integrals converge and evaluate
them.

a. (10 pt)

∫

∞

0

1

(x2 + i)2
dx b. (10 pt)

∫

∞

−∞

1 − cos x

x2
dx

a. Our integration contour is a line segment LR from −R to R (with R > 1) and a
semicircle CR from R to −R in the upper half-plane. The poles of the integrand f are
±(1 − i)/

√
2. Only (−1 + i)/

√
2 = e3πi/4 is inside our integration contour. We notice

∣

∣

∣

∣

∫

CR

f(z)dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣f(Reit)iReit
∣

∣ dt ≤ πR

(R2 − 1)2
→ 0 as R → ∞.
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Where we applied the reverse triangle inequality to the denominator. We conclude that

∫ ∞

0

dx

(x2 + i)2
=

1

2

∫ ∞

−∞

dx

(x2 + i)2
= πiRes(f, (−1 + i)/

√
2)

= πi lim
z→(−1+i)/

√
2

d

dz
(z − (−1 + i)/

√
2)2f(z)

= πi lim
z→(−1+i)/

√
2
−2/(z + (−1 + i)/

√
2)3 = − 2πi

8e9π/4
= −π

4

1 + i√
2

.

Convergence follows from the fact that the integrand is an even function, or that it is
asymptotic with 1/x4.

b. We will integrate the meromorphic function f(z) = (1 − eiz)/z2. The integration
contour will be a small semicircle Cǫ from −ǫ to ǫ in the upper half-plane, a line segment
L1,ǫ,R from ǫ to R, a semicircle CR from R to −R in the upper half-plane and a line
segment L2,ǫ,R from −R to −ǫ, where 0 < ǫ < R. We notice

∣

∣

∣

∣

∫

CR

f(z)dz

∣

∣

∣

∣

≤
∫ π

0

∣

∣f(Reit)iReit
∣

∣ dt ≤ π(1 + 1)R

R2
→ 0 as R → ∞.

Where we have used that |eiz | ≤ 1 in the upper half-plane. We know that the pole in
z = 0 is simple and we should take its residue into account by a factor 1

2 as ǫ → 0. We
conclude that

∫ ∞

−∞

1 − cosx

x2
dx = lim

ǫ→0

∫

|x|≥ǫ

1 − cosx

x2
dx = lim

ǫ→0
lim

R→∞
Re

(

∫

L1,ǫ,R

f(z)dz +

∫

L2,ǫ,R

f(z)dz

)

= − lim
ǫ→0

∫

Cǫ

f = πiRes(f, 0) = π.

The first step was allowed because the integrand can be extended to a continuous func-

tion (in x = 0). The integral is convergent because the integrand is an even function.

Alternatively one could notice that the integrand is in absolute value less then or equal to

2/x2.

Exercise 3 (10 pt) Let f be an entire function satisfying |f(−z)| < |f(z)|
for all z in the upper halfplane (Im(z) > 0).

a. (7 pt) Prove that g(z) = f(z) + f(−z) can only have real roots.

Denote by H the upper half-plane.

The fact that |f(−z)| < |f(z)| for all z ∈ H implies that f has no roots in H . Now

suppose that g(z0) = 0 for some z0 ∈ H . Consider the path C0 which is a small

circle in H around z0. On C0 we have |f(z) − g(z)| = |f(−z)| < |f(z)|. Thus by

Rouché’s theorem f and g should have the same amount of roots inside C0, which
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is a contradiction. We conclude that g has no roots in H . Because g is an even

function it also has no roots in H .

b. (3 pt) Prove that z sin(z) = cos(z) only has real solutions.

The equation is equivalent to

0 = 2i(z sin z − cos z) = zeiz − ze−iz − ieiz − ie−iz = (z − i)eiz + (−z − i)e−iz.

Denote f(z) = −(z + i)e−iz. We notice that for all z ∈ H

|f(−z)| = | − (−z + i)e−i(−z)| = |z − i|e−Im(z) < |z − (−i)|eIm(z) = |f(z)|.

Thus it follows directly from a. that all solutions are real.

Exercise 4 (8 pt) Is there an analytic isomorphism between the open unit
disc D and C \ {a} with a ∈ C ?

No. Suppose there would be such an analytic isomorphism f : C \ a → D. Then f is
bounded in a neighborhood of a and thus f can be extended to an entire function f̃ . But
then |f̃ | ≤ 1 + |f̃(a)|. By Liouville’s theorem f̃ , and thus f , is constant; a contradiction.

Remark: one can also notice that D has a trivial fundamental group while C \ {a} has

fundamental group (isomorphic to) Z. An analytic isomorphism is in particular a home-

omorphism and since the fundamental group is a topological invariant we have reached a

contradiction.

Bonus exercise (15 pt) Let f : C \ {x ∈ R | x ≤ 0 or x = 1} → C be the
sum of (log z)−2 along all the branches of the logarithm, i.e.

f(z) =

∞
∑

n=−∞

1

(log(z) + 2πin)2

a. (5 pt) Prove that f is meromorphic on C \ {x ∈ R | x ≤ 0}.
First let us prove that the series actually converges to an analytic function. Let K
be a compact set in the domain of f . We choose the argument of the log between
−π and π (though it is irrelevant for the series). We notice that for all n 6= 0

| log (z) + 2πin|2 = (log |z|)2 + (2πin − arg(z))2 ≥ π2(2|n| − 1)2.

Hence we find for all z ∈ K
∣

∣

∣

∣

∣

∞
∑

n=∞

1

(log(z) + 2πin)2

∣

∣

∣

∣

∣

≤ max
K

∣

∣

∣

∣

1

log(z)

∣

∣

∣

∣

+
2

π2

∞
∑

n=1

1

(2n − 1)2
< ∞.
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We conclude that the series defines an analytic function. We notice:

lim
z→1

(z − 1)2f(z) = lim
z→1

(

z − 1

log(z)

)2

+ 0 = 1.

Thus f has a pole of order 2 in z = 1 and we conclude that f is meromorphic on

C \ {x ∈ R|x ≤ 0}.

b. (5 pt) Prove that f can be analytically continued to C \ {1}.

First we only look at z in U = {z ∈ C|Re(z) < 0 and Im(z) 6= 0}. Define LOG to
be the logarithm with the argument between 0 and 2π. Notice that by construction
we have on U :

∞
∑

n=∞

1

(log(z) + 2πin)2
=

∞
∑

n=∞

1

(LOG(z) + 2πin)2
.

However, the right hand side can easily be analytically continued to {z ∈ C|Re(z) <
0}, because it is the composition of two analytic functions on that set (namely the
LOG and the series one gets by replacing log(z) by z in the series for f). We
conclude that f can be analytically continued to C \ {0, 1}. We notice that

lim
z→0

f(z) =
∞
∑

n=∞
lim
z→0

1

(log(z) + 2πin)2
= 0.

Here we could swap the order of the sum and limit due to uniform convergence and

the fact that the terms of the series can be extended to continuous functions. We

conclude that f is bounded in a neighborhood of 0, hence it can be analytically

continued to C \ {1}.

c. (5 pt) Prove this analytic continuation is a rational function.

Define g(z) = (z − 1)2f(z) for z 6= 1 and g(1) = 1. It follows from a. that this
definition makes g entire, so we can write g(z) = a0 + a1z + a2z

2 + . . .. Notice that
g(1/z) = (1/z − 1)2f(z) = g(z)/z2. Hence

. . . + a2z
−2 + a1z

−1 + a0 = a0z
−2 + a1z

−1 + a2 + . . . .

From this we deduce that an = 0 for all n > 2. We must conclude that

f(z) =
a0(1 + z2) + a1z

(z − 1)2
.

i.e. f is a rational function. (One easily shows that a0 = 0 and a1 = 1.)
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