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SOLUTIONS ENDTERM COMPLEX FUNCTIONS
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Exercise 1 (15 pt):
Prove that the following integral converges and evaluate it.∫ ∞

0

cos(π2x)

x2 − 1
dx.

(Hint: Use a contour consisting of three semicircles and three segments.)

Solution. The integrand extends continuously to x = 1. For x > 2, the integrand
is bounded in absolute value by 2/x2, so the integral converges. In order to use the
residue method, we consider f(z) = exp(πiz/2)/(z2 − 1), with simple poles at 1 and

−1. Note that
∫ −a
−b f(z) dz = [z = −x, dz = −dx] =

∫ b
a exp(−πix/2)/(x2 − 1) dx,

so
∫ −a
−b f(z) dz +

∫ b
a f(z) dz = 2

∫ b
a cos(πx/2)/(x2 − 1) dx for b > a > 1 and also for

0 = a < b < 1. We integrate f(z) therefore over a contour in the closed upper half
plane consisting of a semicircle SR of radius R > 2 around 0, semicircles Sε and Tε of
radius ε with 0 < ε < 1 around −1 and +1 respectively, and segments from −R to
−1 − ε, from −1 + ε to 1 − ε, and from 1 + ε to R. The integral is zero. Let R → ∞
and ε → 0. The integral over SR is bounded in absolute value by 2πR/R2 and goes to
zero. Let us give Sε and Tε the clockwise orientation. When ε → 0, the integral over
Sε approaches −πiRes−1f and that over Tε approaches −πiRes1f . Their sum goes to
−πi(eπi/2− e−πi/2)/2 = π sin(π/2) = π. As mentioned, the sum of the integrals over the
segments goes to twice the desired integral. We conclude that∫ ∞

0

cos(π2x)

x2 − 1
dx = −π

2
.

Exercise 2 (15 pt):
Determine the fractional linear transformations F that map R to R and the unit circle
to the unit circle. (As you know, the domain of F equals either C or the complement of
exactly one point. The precise meaning of the above is that F maps the real points in
its domain to R, and the points on the unit circle in its domain to the unit circle.)
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Solution. We know that there exist a, b, c, and d ∈ C with ad − bc 6= 0 such that
F (z) = (az+b)/(cz+d) for all z in the domain. When c = 0, the domain is C, otherwise
it is C \ {−d/c}. Analogously, the image is either C or C \ {a/c}. We also know that
F gives a bijection from its domain to its image. In case c 6= 0: when z → −d/c, then
F (z) → ∞. It follows that the domain of F contains the unit circle. In particular, F
is defined at 1 and −1. Moreover, F preserves {1,−1}, the intersection of the real line
and the unit circle. Let z →∞ along the real line; it follows that c = 0 or a/c is real.
Assume first that F (1) = 1 and F (−1) = −1. Then a + b = c + d and −a + b = c − d,
so b = c and a = d and a2 6= b2. If a = 0, then F (z) = 1/z, preserving the unit
circle and R \ {0}. Otherwise, we can take a = 1 and F (z) = (z + b)/(bz + 1), with b
real. Clearly, F maps the real points in its domain to real points. When |z| = 1, then
|bz + 1| = |b+ 1/z| = |b+ z| = |b+ z|, so |F (z)| = 1 and F preserves the unit circle.
Next, if F (1) = −1 and F (1) = −1, then F (−z) (or −F (z)) gives a fractional linear
transformation that fixes 1 and −1, preserves the unit circle and maps real points to real
points. So it is of the form above. Conclusion: F (z) = ±(1/z) or F (z) = ±(z+b)/(bz+1)
for b real, b2 6= 1, are precisely the fractional linear transformations asked for.

Exercise 3 (15 pt):
Let U ⊆ C be a nonempty open and connected set. A function f : U → C is distance
preserving when |f(z)−f(w)| = |z−w| for all z and w in U . Determine (with proof) the
distance preserving holomorphic functions on U . (State the theorems (or their names)
that you use. As mentioned above: when you use a theorem, show that the conditions
are met.)

Solution. Assume that f : U → C is holomorphic and distance preserving. We know
that the derivative of f exists. Also, f ′(z) = limw→z

f(z)−f(w)
z−w , so we find that |f ′(z)| = 1

for all z ∈ U . Since f is analytic on U , we have that f ′ is analytic as well. But its image
is contained in the unit circle, so the open mapping theorem tells us that f ′ is locally
constant, hence constant, since U is connected. So f ′ is constant, of absolute value 1,
hence there exist a and b in C with |a| = 1 such that f(z) = az + b for all z ∈ U (again
using the connectedness: if f ′ ≡ a, then f(z)− az has zero derivative, hence is constant
on U). Since f is a rotation followed by a translation, it is distance preserving.

Exercise 4 (15 pt):
Let S ⊂ C be a closed set that is discrete (i.e., every point of S is isolated). Let U ⊆ C
be the complement of S. Prove that a holomorphic function f from U to the upper half
plane H is necessarily constant.

Solution. We know that H and the open unit disc D are analytically isomorphic; let
g : H → D be an analytic isomorphism. Then g ◦ f : U → D is analytic and bounded.
At each point s of S, the function g ◦ f has an isolated singularity, but since g ◦ f is
bounded in a punctured neighbourhood of s, the singularity is a removable one. So g ◦ f
extends to a holomorphic function h from C to D. Then h is entire and bounded, so



constant by Liouville’s theorem. Then g ◦ f and f are constant as well (with image one
point in D resp. H).

Exercise 5 (15 pt):
Let f be an entire function that is not a polynomial. Show that for every c ∈ C there
exists an unbounded sequence (zn)n∈N such that f(zn)→ c as n→∞.

Solution. As f is entire, we can write f as

f(z) =
∑

anz
n.

We set g(z) := f
(
1
z

)
and, because f is not a polynomial, we observe that g has an

essential singularity at 0. Pick a point c ∈ C. Then by the Casorati-Weierstrass Theorem,
given an ε > 0, we can find in any punctured neighbourhood V of 0 a point w ∈ V such
that |g(w)− c| < ε. We use this fact to construct our sequence.
Let n ∈ N and pick a point wn ∈ D

(
0, 1n

)
(with wn 6= 0) such that |g(wn) − c| < 1

n .
Then we define zn = 1

wn
, so that f(zn)→ c as n→∞ by construction; clearly, (zn)n∈N

is unbounded.

Exercise 6 (15 pt):
Prove that the following integral converges and evaluate it.∫ ∞

0

(log x)2

x2 + 1
dx.

(Hint: Use a contour consisting of two semicircles and two segments. Use an appropriate
definition of the complex logarithm.)

Solution. Convergence near∞ is essentially obvious, e.g., since x−3/2 bounds the inte-
grand. Convergence near 0 follows from partial integration, since the limits of x(log x)2

and x log x as x → 0 exist (and are 0). Let f(z) = (log z)2/(z2 + 1), where we take
the (branch of the) complex logarithm on C \ iR≤0 that continues log x for x > 0, i.e.,
for z = r exp(iφ) with r > 0 and −π/2 < φ < 3π/2 we have log z = log r + iφ. Take
a contour in the closed upper half plane consisting of the semicircle SR around 0 of
radius R > 2, the semicircle Sε around 0 of radius ε with 0 < ε < 1/2, and segments
from −R to −ε and from ε to R. The only pole of f inside the contour is at z = i; it
is simple, with residue equal to −(π2/4)/(2i) (since log i = iπ/2), so the integral of f
over the contour equals −π3/4. Note that

∫ −ε
−R f(z)dz = [z = −x, dz = −dx, log z =

log x+ iπ] =
∫ R
ε (log x+ iπ)2/(x2 + 1) dx. Let R→∞ and ε→ 0. The integral over SR

is bounded in absolute value by πR(logR+ π)2/(R2 − 1) and goes to 0 as R→∞. The
integral over Sε is bounded in absolute value by πε(| log ε|+ π)2/(3/4) and also goes to
0 as ε→ 0. Taking the real part, we find that

2

∫ ∞
0

(log x)2

x2 + 1
dx− π2

∫ ∞
0

dx

x2 + 1
= −π

3

4
.



But we know that
∫∞
0

dx
x2+1

= π/2, so we find the answer∫ ∞
0

(log x)2

x2 + 1
dx =

π3

8
.

(Taking the imaginary part, we find that
∫∞
0

log x
x2+1

dx = 0; we can also obtain this
by integration over the same contour, or by a simple substitution. Needless to say,∫∞
0

dx
x2+1

= π/2 can also be obtained by contour integration.)


