RETAKE COMPLEX FUNCTIONS

JULY 19, 2018, 13:30-16:30

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.
- The use of books, notes, computers, calculators, mobile phones, etc., is not allowed.

Exercise 1 (15 pt):

- **a.** (5 pt) Find the four complex roots of $z^4 + z^2 + 1 = 0$. (*Remark: the answer will be useful to you in Exercise 2 below.*)
- **b.** (5 pt) State a version (or several versions) of the maximum modulus principle.
- **c.** (5 pt) Let U be a nonempty, open, and connected set in \mathbb{C} . Determine the holomorphic functions f on U such that |f'''(z)| = 2 for $z \in U$.

Exercise 2 (20 pt):

a. $(10 \ pt)$ The following integral clearly converges. Evaluate it.

$$\int_0^\infty \frac{1}{x^4 + x^2 + 1} \, dx.$$

b. $(10 \ pt)$ The following integral converges. Evaluate it.

$$\int_0^\infty \frac{\log(x)}{x^4 + x^2 + 1} \ dx.$$

(*Hint:* Use a contour consisting of two semicircles and two segments. Use an appropriate definition of the complex logarithm.)

Please turn over.

Exercise 3 (40 pt):

The goal of this exercise is to prove that the following identity holds:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3 \sinh(\pi n)} = \frac{\pi^3}{360}$$

(Recall that $2\sinh(z) = e^z - e^{-z}$.) The proof is divided in a number of steps. Even if you fail to complete one of the steps, you may be able to complete later ones. The idea is to consider the integral of

$$f(z) = \frac{\pi}{z^3 \sinh(\pi z) \sin(\pi z)}$$

over the square γ_N with vertices $(\pm (N + \frac{1}{2}), \pm (N + \frac{1}{2})i)$, for $N \in \mathbb{N}$.

- **a.** (5 pt) Let T_N be one of the sides of the square γ_N , say the top side. Prove that there exists a positive lower bound, independent of N, for $|\sinh(\pi z)|$ on T_N (i.e., for all $z \in T_N$).
- **b.** (5 pt) Prove that there exists a positive lower bound, independent of N, for $|\sin(\pi z)|$ on T_N .
- c. (3 pt) Prove that such bounds also exist for the other sides of the square.
- **d.** (5 pt) Deduce that

$$\int_{\gamma_N} f \to 0 \text{ as } N \to \infty.$$

- **e.** (3 pt) Determine all the poles of f.
- **f.** $(5 \ pt)$ At each nonzero pole of f, determine the residue of f.
- **g.** (3 pt) Prove that the sum of all the residues of f converges absolutely and is equal to zero.
- **h.** $(8 \ pt)$ Determine the residue of f at 0. (This is somewhat difficult.)
- i. (3 pt) Complete the proof of the desired identity.

Exercise 4 (15 pt):

Consider the punctured unit disc $D \setminus \{0\} = \{z \in \mathbb{C} : 0 < |z| < 1\}$. Let $S = \{z_n \mid n \in \mathbb{N}\}$ be an infinite subset of $D \setminus \{0\}$ satisfying

$$\lim_{n \to \infty} z_n = 0$$

Note that each point of S is isolated. Finally, let f be a holomorphic function on the complement U of S in $D \setminus \{0\}$, and assume that f has poles at all the points of S. Show that the image of f is dense in \mathbb{C} .