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ExAM COMPLEX FUNCTIONS FEBRUARY 2005—SOLUTIONS

1a. Prove that e'/*" has an essential singularity at 0 when n is a positive integer.
If not, then e'/#" is meromorphic at 0 and so lim,_,q e/*" exists (with co allowed).
But if we take (z = 1), we get limy_.o e¥” = oo, wheras for (z = 1),
we get limy_,o €27%" = 1. So the singularity is essential.

Other proof: for every ¢ > 0, the function w = 2™ maps the punctured disk
0 < |2| < « onto the punctured disk 0 < |w| < €™; since e'/* has an essential
singularity at 0, this function maps 0 < |w| < ™ onto a dense subset of C. Hence
el/#" maps 0 < |z| < ¢ onto a dense subset of C. This also implies that e/*" has
an essential singularity at 0.

1h. Let f € CJz] be a polynomial in z. Prove that ¢/ has an essential singularity
at oo unless f is constant.
Suppose f nonconstant. Since f is meromorphic and nonconstant at oo, we have
that for every R > 0, w := f(z) sends |z| > R to a punctured neighborhood of oo,
i.e., its image contains a subset of the form |w| > R’ for some for some R’ > 0.
But since e® has an essential singularity at oo, the image of |w| > R’ under e¥ is
dense in C. So ef has then an essential singularity at co.

2. Consider the polynomial function f(z) := 2% + 22 + 1.
2a. Determine the number of zeroes of f on |z| < 1.
We compare f with g(z) := 2z + 1. On |2| = 1 we have |2z 4+ 1| > 1 with
equality only when z = —1, whereas |f(z) — g(z)| = |2|® = 1. Soon |z| = 1,
we have |f(z) — g(z)| < |g(z)| with equality only if z = —1. Since the inequality
is not strict, the Rouché principle does not apply for this radius; we therefore take
it slightly smaller: |z| = 1 — e with e > 0 very small. Then |2z + 1] > 1 — 2¢
and [z|® = (1 —e)® =1 — 8 +o(e) and s0 |g(2)| — | f(2) — g(2)| = 6¢ + o(e)
on |z] = 1 — ¢ and hence positive for sufficiently small ¢ > 0. According to
the Rouché principle, f has then in |z| < 1 — e as many zeroes (counted with
multiplicity) as g. The latter has z = —% as its only zero, so this number is one. As
we can take ¢ as small as we please, it follows that f has only one zero in |z| < 1.
2b. Prove that —1 is the only zero of f on the circle |z| = 1.
If 2 is a zero of f with |z| = 1, then |2z + 1| = | — 28| = 1 and this implies
z=—1
2c. Prove that f has no zeroes of multiplicity > 1. How many zeroes will f
therefore have on |z| > 1?
If z is a zero of f of order > 2, then f(z) = f'(z) = 0, ie, 22 +22+1 =
82742 =0.Hence 2" = —+ and s0 0 = 2% + 2z + 1 = Iz + 1. It follows that
z = —2. But (—2)" # —1 and so such a = does not exist. Hence f has as many
zeros as its degree, namely 8. In view of 2a and 2b, this implies that f has exactly
6 zeroes on |z| > 1.

3. Compute for 0 < s < 1 the integral f027r .

This is a trigonometric integral and so we use the substitution z := . Then
1



dt = —iz"'dz and cost = (2 + 2~ !) so that
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The denominator 22 + 2z + 1 factors as (2 — 24 )(z — z_) With zy = —s~1 &
V572 — 1. It has z, as its unique zero lying in |z| < 1 and the residue of (22 +
2, +1)"Linthis pointis (24 — z_)~! = (2.v/s~2 — 1)~L. So the integral we are
after is by the residue theorem equal to
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4. Prove that the integral f_°°oo > ff dx converges and compute its value.
The integral converges (absolutely) because for |z| > 1, ]%\ < 2|z|7% and
fl°° 22~2dx < oo. In order to compute it, we consider for R > 1 the integral
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where I'r is the closed path which first traverses the real interval [— R, R] and then
the semicircle I', : ¢ € [0, 7] — Re®. The integral I(R) is computed by means
of the residue formula: we factor the denominator 22 +1 = (z — 4)(z + 7). Its
zero inside I'g is i and the residue of (22 + 1)~ !e%# at this point is (2i) ~te 2. It
follows that I(R) = 27i(2i) " te™2 = me 2.

Fort¢ € [0,7] and R > 1, we have
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The latter goes to zero as R — oo. It follows that limp_, f_RR I%er—zlda: = e 2

Taking the real part yields [ %2 dy = me ™2,

5. Give a biholomorphic map from the open unit disk onto the open half disk
defined by |z| < 1,Im(z) > 0.
Recall that w — (w —i)(w+14) ' maps the upper half plane H , onto the open unit
disk A. So its inverse, z — w = —i(z + 1)(z — 1) 71, maps A biholomorphically
onto H. The function w = 1(¢ + ¢~!) maps the lower half disk A_ biholomor-
phically onto H,: if € A_, then Im(w) = %Im(g) > 0sothatw € Hy.
The inverse map H, — A_ is given by picking the root of ¢? — 2¢w + 1: one root
satisfies || > 1 and Im(¢) > 0 and the other || < 1 and Im(¢) < 0. We take
the latter and denote it by ¢ (w) (in fact, ((w) = —w + vw? — 1, where the square
root is taken with its argument in (0, 7)). Then z — —((—i(z + 1)(z — 1)71) is
as desired.



