Mathematisch Instituut, Faculteit Wiskunde en Informatica, UU. In electronische vorm beschikbaar gemaakt door de \mathcal{BC} van A-Es². Het college COMPL werd in 2001/2002 gegeven door Prof. Dr. Looijenga.

Complexe Functies (COMPL) 11 december 2001

Write your name and student number on every page you hand in. Prove your assertions.

Opgave 1

Let f be a holomorphic function on a connected open subset $\Omega \subset \mathbb{C}$. Denote by $\Omega' \subset \mathbb{C}$ the image of Ω under complex conjugation.

- a. Suppose that the function $z \in \Omega \mapsto \overline{f(z)}$ is also holomorphic. Prove that f is constant.
- b. Suppose that the function $z \in \Omega' \mapsto f(\bar{z})$ is also holomorphic. Prove that f is constant.
- c. When is the function $z \in \Omega' \mapsto \overline{f(\overline{z})}$ holomorphic?

Opgave 2

- a. Let a, b, c, d be real numbers with ad-bc > 0. Prove that the fractional linear transformation $z \mapsto (az+b)(cz+d)^{-1}$ maps the upper half plane (defined by Im(z) > 0) onto itself.
- b. Prove also that any fractional linear transformation with that property is of this form.
- c. Show that even every holomorphic diffeomorphism f of the upper half plane onto itself is of this form.

(Hint: if f(i) = a + bi with a, b real and b > 0, then $z \mapsto b^{-1}(f(z) - a)$ is a holomorphic diffeomorphism of the upper half plane onto itself which fixes i. Now use the Cayley transformation $\tau(z) = (z - i)/(z + i)$ to convert the problem into one which we can solve on the unit disc.)

Opgave 3

Determine the annulus of convergence of the Laurent series

$$\sum_{n \in \mathbb{Z} - \{0\}} \left(\frac{z}{\sqrt{|n|}} \right)^n.$$

Opgave 4

Let $f(z) := z^{-2}(\sin z)^{-1}$.

- a. Determine the poles of f and compute the residue at each of these.
- b. Evaluate the series $\sum_{n=1}^{\infty} (-1)^n n^{-2}$.

Opgave 5

Show that for $0 < \alpha < 1$ the integral

$$\int_0^\infty \frac{z^\alpha}{1+z^2} dz$$

converges and evaluate its value.