Institute of Mathematics, Faculty of Mathematics and Computer Science, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{BC}}$ of A–Eskwadraat In 2007/2008, the course WISB311 was given by Erik van den Ban.

Complex Functions (WISB311) 02 July 2007

Remark: The exam also had a dutch version. Because of time constraints, it is omitted here.

Question 1

Let $\alpha \in \mathbb{C}$, let r > 0 and assume that the function f is holomorphic on an open neighborhood in \mathbb{C} of the closed disk $\overline{D}_r := \overline{D}(\alpha; r) : |z - \alpha| \le r$

a) Show that for all $z_1, z_2 \in D_r := D(\alpha; r)$,

$$f(z_1) - f(z_2) = \frac{z_1 - z_2}{2\pi i} \int_{\partial D_r} \frac{f(w)}{(w - z_1)(w - z_2)} dw.$$

Hint: Use Cauchy's integral formula for $f(z_j), j = 1, 2$

b) Assume that $|f(w)| \leq M$ for all $w \in \partial D_r$. Show that

$$|f(z_1) - f(z_2)| \le \frac{4M}{r} |z_1 - z_2|$$

for all z_1, z_2 in the disk $D_{r/2} := D(\alpha, r/2)$.

Question 2

We consider the polynomial function $p(z) = z^{10} + (4+3i)z^8 - z^2 + i$

- a) Show that $|z| > \frac{1}{2}$ for any zero z of p.
- b) Determine the number of zeros of p contained in the annulus 1 < |z| < 2. (Zeros should be counted with multiplicities.)
- c) Same question, but now for the annulus 2 < |z| < 3.

Question 3

We consider the integral

$$I = \int_0^\infty \frac{1}{1+x+x^2} \frac{dx}{\sqrt{x}}.$$

To compute it, we first calculate two residues. We denote by s(z) the holomorphic function on $\mathbb{C}\setminus[0,\infty[$ (i.e., \mathbb{C} minus the positive real axis) determined by

$$s(z)^2 = z$$
, and $s(-1) = i$.

- a) Give an expression for s(z) in terms of a suitable logarithmic function.
- b) Let α be the unique root of the polynomial $1+z+z^2$ with $\operatorname{Im} \alpha>0$ Determine the residue of the function

$$\frac{1}{1+z+z^2} \frac{1}{s(z)}$$

in α . In addition, determine the residue of this function in the conjugate point $\overline{\alpha}$.

c) Calculate the integral I. Hint: use the following closed curve:

Question 4

Give an invertible complex 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

we denote by $F_A: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ the fractional linear transformation given by

$$F_A(z) = \frac{az+b}{cz+d}.$$

- a) Determine a matrix M such that the associated fractional linear transformation F_M maps the points 1, i, -1 onto $0, 1, \infty$, respectively.
- b) Prove that F_M maps the unit circle |z| = 1 onto $\hat{\mathbb{R}} = \mathbb{R} \cup \infty$.
- c) Prove that F_M maps the unit disk $D = \{z \in \mathbb{C} | |z| < 1\}$ bijectively onto the upper half plane $\mathcal{H} = \{z \in \mathbb{C} | \text{Im } z > 0\}.$
- d) Let F be any fractional linear transformation mapping D onto \mathcal{H} . Show that for every point $z \in D$ we have $F(1/\overline{z}) = \overline{z}$. Hint: show first that $z \mapsto \overline{F(1/\overline{z})}$ is analytic, and that the identity holds for $z \in \partial D$. If you fail to see the argument, show at least that identity is valid for $F = F_M$.