Measure and Integration: Hertentamen 2013-14

- (1) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$. (1.5 pt)
- (2) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$. (1.5 pt)
- (3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.
 - (a) Show that f_h is Borel measurable for all h > 0. (1 pt)
 - (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \le ||f||_1$. (1 pt)
- (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue

 - (a) Show that for any $u \in \mathcal{L}^1(\lambda)$, one has $u\mathbf{1}_{[n-1/n,n+1/n]} \xrightarrow{\lambda} 0$. (1 pt) (b) Show that for any $u \in \mathcal{L}^1(\lambda)$, the sequence $(|u|\mathbf{1}_{[n-1/n,n+1/n]})$ is uniform integrable. (1 pt) (c) Show that for any $u \in \mathcal{L}^1(\lambda)$ one has, $\lim_{n \to \infty} \int_{[n-1/n,n+1/n]} u \, d\lambda = 0$. (1 pt)
- (5) Let (X, \mathcal{A}, μ) be a measure space and $f \in \mathcal{L}^1(\mu)$. Define $A_n = \{x \in X : 1/n \le |f(x)| < n\}$, for $n \geq 1$. Show that for every $\epsilon > 0$, there exists a positive integer N, such that $\mu(A_N) < \infty$ and $\int_{A_{sr}^c} |f| d\mu < \epsilon$. (2 pts)