Measure and Integration: Final 2014-15

- (1) Consider a measure space (X, \mathcal{A}, μ) , and let $(f_n)_n$ be a sequence in $\mathcal{L}^2(\mu)$ which is bounded in the \mathcal{L}^2 norm, i.e. there exists a constant C > 0 such that $||f_n||_2 < C$ for all $n \ge 1$.
 - (a) Prove that $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$. (1 pt.)
 - (b) Prove that $\lim_{n\to\infty} \frac{f_n}{n} = 0$ μ a.e. (1 pt.)
- (2) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose that the real valued functions $f_n, g_n, f, g \in \mathcal{M}(\mathcal{A})$ $(n \geq 1)$ satisfy the following:
 - (i) $f_n \xrightarrow{\mu} f$,
 - (ii) $g_n \xrightarrow{\mu} g$,
 - (iii) $|f_n| \leq C$ for all n, where C > 0.

Prove that $f_n g_n \xrightarrow{\mu} fg$. (2 pts)

- (3) Let (X, A) be a measurable space and let μ, ν be finite measures on A.
 - (a) Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$\int_{A} (1 - f) \, d\mu = \int_{A} f \, d\nu.$$

(1 pt)

- (b) Show that the function f of part (a) satisfies $0 \le f \le 1 \mu$ a.e. (1 pt)
- (4) Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function $f(x,t) = e^{-xt}$) that $\int_{[0,\infty)} (e^{-at} e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$, where λ denotes Lebesgue measure. (2 pts)
- (5) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$ satisfies $f^n \in \mathcal{L}^1(\mu)$ for all $n \geq 1$.
 - (a) Show that if $\lim_{n\to\infty} \int f^n d\mu$ exists and is finite, then $|f(x)| \leq 1 \mu$ a.e. (1 pt)
 - (b) Show that $\int f^n d\mu = c$ is a constant for all $n \ge 1$ if and only if $f = \mathbf{1}_A \mu$ a.e. for some measurable set $A \in \mathcal{A}$. (1 pt)