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(1) Consider a measure space (X,A, µ), and let (fn)n be a sequence in L2(µ) which is bounded in
the L2 norm, i.e. there exists a constant C > 0 such that ||fn||2 < C for all n ≥ 1.

(a) Prove that
∑∞
n=1( fnn )2 ∈ L1

R(µ). (1 pt.)

(b) Prove that lim
n→∞

fn
n

= 0 µ a.e. (1 pt.)

Proof (a): First observe that
∞∑
n=1

||fn
n
||22 =

∞∑
n=1

||fn||22
n2

≤
∞∑
n=1

C2

n2
<∞.

Now, by Beppo-Levi and the above, we have∫ ∞∑
n=1

(
fn
n

)2 dµ =

∞∑
n=1

∫
(
fn
n

)2 dµ =

∞∑
n=1

||fn
n
||22 <∞.

Hence,
∑∞
n=1( fnn )2 ∈ L1

R(µ).

Proof (b): Since
∑∞
n=1( fnn )2 ∈ L1

R(µ), then
∑∞
n=1( fnn )2 <∞ µ a.e. and as a result lim

n→∞

(fn
n

)
= 0

µ a.e.

(2) Let (X,A, µ) be a finite measure space. Suppose that the real valued functions fn, gn, f, g ∈M(A)
(n ≥ 1) satisfy the following:

(i) fn
µ−→ f ,

(ii) gn
µ−→ g,

(iii) |fn| ≤ C for all n, where C > 0.

Prove that fngn
µ−→ fg. (2 pts)

Proof: Let ε > 0 and δ > 0, since µ is a finite measure, it is enough to show that there exists
N ≥ 1 such that

µ({x ∈ X : |fngn − fg| > ε}) < δ, for all n ≥ N.
First note that

|fngn − fg| ≤ |fn||gn − g|+ |g||fn − f |,
thus,

µ({x ∈ X : |fngn − fg| > ε}) ≤ µ({x ∈ X : |fn||gn − g| > ε/2}) + µ({x ∈ X : |gn||fn − f | > ε/2}).
Let En = {x ∈ X : |g| > n}, then E1 ⊇ E2 ⊇ · · · , and since g is real valued we have

⋂∞
n=1En = ∅.

By finiteness of µ, we have

lim
n→∞

µ(En) = µ(

∞⋂
n=1

En) = 0.

Choose m large enough so that µ(Em) < δ/3. By properties (i) and (ii), there exists N ≥ 1 so
that for n ≥ N ,

µ({x ∈ X : |fn − f | > ε/2m}) < δ/3, and µ({x ∈ X : |gn − g| > ε/2C}) < δ/3.

Then for all n ≥ N ,

µ({x ∈ X : |fn||gn − g| > ε/2}) ≤ µ({x ∈ X : |gn − g| > ε/2C}) < δ/3,

and

µ({x ∈ X : |g||fn − f | > ε/2}) ≤ µ(Em) + µ({x ∈ Ecm : |fn − f | > ε/2m}) < 2δ/3.

Therefore, µ({x ∈ X : |fngn − fg| > ε}) < δ for all n ≥ N , and hence fngn
µ−→ fg.
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(3) Let (X,A) be a measurable space and let µ, ν be finite measures on A.
(a) Show that there exists a function f ∈ L1

+(µ) ∩ L1
+(ν) such that for every A ∈ A, we have∫

A

(1− f) dµ =

∫
A

f dν.

(1 pt)
(b) Show that the function f of part (a) satisfies 0 ≤ f ≤ 1 µ a.e. (1 pt)

Proof(a): First note that µ + ν is a measure (Exercise 4.6(ii)), and that µ � µ + ν. By
using a standard argument (first checking indictor functions, then simple functions, then positive
functions, then general integrable functions) one sees that for any g ∈ L1(µ + ν) one has g ∈
L1(µ) ∩ L1(ν), and ∫

g d(µ+ ν) =

∫
g dµ+

∫
g dν.

Now the condition
∫
A

(1−f) dµ =
∫
A
f dν is equivalent to µ(A) =

∫
A
f d(µ+ν). Since µ� µ+ν,

then by Radon-Nikodym Theorem there exists f ∈ L1
+(µ + ν) such that µ(A) =

∫
A
f d(µ + ν).

Thus, f ∈ L1
+(µ) ∩ L1

+(ν) and
∫
A

(1− f) dµ =
∫
A
f dν for all A ∈ A.

Proof(b): Define ρ on A by ρ(A) =
∫
A
f dµ (A ∈ A). Since f ∈ L1

+(ν), then ρ is a finite

measure and ρ � ν. By part (a), we have ρ(A) =
∫
A

(1 − f) dµ, A ∈ A and (1 − f) ∈ L1(µ).
By Theorem 10.9(ii), we see that if µ(A) = 0, then ρ(A) = 0, hence ρ � µ. By the Theorem of
Radon Nikodym, there exists a unique µ a.e. function g ∈ L1

+(µ) such that ρ(A) =
∫
A
g dµ for

all A ∈ A. This gives that∫
A

g dµ =

∫
A

(1− f) dµ, for all A ∈ A.

By Corollary 10.14(i), we have g = 1− f µ a.e. Since g, f ≥ 0, we get 0 ≤ f ≤ 1 µ a.e.

(4) Let 0 < a < b. Prove with the help of Tonelli’s theorem (applied to the function f(x, t) = e−xt)

that
∫
[0,∞)

(e−at − e−bt)1

t
dλ(t) = log(b/a), where λ denotes Lebesgue measure. (2 pts)

Proof Let f : [a, b] × [0,∞) be given by f(x, t) = e−xt. Then f is continuous (hence
measurable) and f > 0. By Toneli’s theorem∫

[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =

∫
[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x).

For each fixed x ∈ [a, b], the function t→ e−xt is positive measurable and the improper Riemann
integrable on [0,∞) exists, so that∫

[0,∞)

e−xtdλ(t) =

∫ ∞
0

e−xtdt =
1

x
.

Furthermore, the function x→ 1

x
is measurable and Riemann integrable on [a, b], thus∫

[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x) =

∫
[a,b]

1

x
dλ(x) =

∫ b

a

1

x
dx = log(b/a).

On the other hand,∫
[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =

∫
[0,∞)

∫ b

a

e−xtdx dλ(t) =

∫
[0,∞)

(e−at − e−bt)1

t
dλ(t).

Therefore,
∫
[0,∞)

(e−at − e−bt)1

t
dλ(t) = log(b/a).

(5) Let (X,A, µ) be a finite measure space, and f ∈M(A) satisfies fn ∈ L1(µ) for all n ≥ 1.
(a) Show that if limn→∞

∫
fn dµ exists and is finite, then |f(x)| ≤ 1 µ a.e. (1 pt)

(b) Show that
∫
fn dµ = c is a constant for all n ≥ 1 if and only if f = 1A µ a.e. for some

measurable set A ∈ A. (1 pt)
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Proof (a) Let E = {x ∈ X : |f(x)| > 1} and assume for the sake of getting a contradiction that

µ(E) > 0. For k ≥ 1, let Ek = {x ∈ X : |f(x) > 1 + 1/k}. Then Ek is an increasing sequence
of measurable set with E =

⋃∞
k=1Ek. Since µ(E) > 0, then there exists k ≥ 1 sufficiently large

such that µ(Ek) > 0. Note that for any n ≥ 1,

f2n = f2n1Ek
+ f2n1Ec

k
≥ f2n1Ek

≥ (1 + 1/k)2n1Ek
.

Thus, for all n ≥ 1 ∫
f2n dµ ≥ (1 + 1/k)2nµ(Ek).

This implies that

lim
n→∞

∫
f2n dµ ≥ lim

n→∞
(1 + 1/k)2nµ(Ek) =∞,

contradicting the fact that limn→∞
∫
fn dµ <∞. Thus µ(E) = 0 and |f(x)| ≤ 1 µ a.e.

Proof (b) If f = 1A for some measurable set A ∈ A, then fn = 1A for all n ≥ 1 and hence∫
fn dµ = µ(A) for all n ≥ 1.
Conversely, assume

∫
fn dµ = c for all n ≥ 1. Since limn→∞

∫
fn dµ = c exists and is finite,

then by part (a), we have that |f(x)| ≤ 1 µ a.e. Let A = {x ∈ X : f(x) = 1}, B = {x ∈
X : f(x) = −1}, and C = {x ∈ X : |f(x)| < 1}. Since f ∈ M(A), then A,B,C ∈ A, and
f = 1Af + 1Bf + 1Cf and for any n ≥ 1,

c =

∫
fn dµ = µ(A) + (−1)nµ(B) +

∫
C

fn dµ,

as well as

c = lim
n→∞

∫
fn dµ = lim

n→∞

(
µ(A) + (−1)nµ(B) +

∫
C

fn dµ

)
.

Note that limn→∞ 1Cf
n(x) = 0 for all x ∈ X, and |1Cfn(x)| ≤ 1. Since µ(X) < ∞, then

1 ∈ L1(µ), then by Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
C

fn dµ = lim
n→∞

∫
1Cf

n(x) dµ =

∫
lim
n→∞

1Cf
n(x) dµ = 0.

As a result we have

c = lim
n→∞

(
µ(A) + (−1)nµ(B)

)
.

If we take the limit along even n, we get c = µ(A) + µ(B), and if we take the limit along odd
n, we get c = µ(A) − µ(B). This implies that µ(B) = 0, and hence 1Bf = 0 µ a.e. Therefore,
c = µ(A) = µ(A)+

∫
C
fn dµ = 0 for all n ≥ 1, and hence

∫
C
fn dµ = 0 for all n ≥ 1. In particular,∫

C
f2 dµ =

∫
1Cf

2 dµ = 0. Since 1Cf
2 ≥ 0, this implies that 1Cf

2 = 0 µ a.e. and hence 1Cf = 0
µ a.e. Thus, f = 1Af + 1Bf + 1Cf = 1Af = 1A µ a.e.

We give also a second short proof: Note that∫
f2(1− f)2 dµ =

∫
f2 dµ− 2

∫
f3 dµ+

∫
f4 dµ = c− 2c+ c = 0.

Since f2(1 − f)2 ≥ 0, this implies that f2(1 − f)2 = 0 µ a.e. implying that f is 0 or 1 µ a.e.
equivalently f is µ a.e.equals the indicator function 1A with A = {x ∈ X : f(x) = 1}.


