Measure and Integration: Solutions Final 2014-15

- (1) Consider a measure space (X, \mathcal{A}, μ) , and let $(f_n)_n$ be a sequence in $\mathcal{L}^2(\mu)$ which is bounded in the \mathcal{L}^2 norm, i.e. there exists a constant C > 0 such that $||f_n||_2 < C$ for all $n \ge 1$. (a) Prove that $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^1_{\mathbb{R}}(\mu)$. (1 pt.)

 - (b) Prove that $\lim_{n\to\infty} \frac{f_n}{n} = 0$ μ a.e. (1 pt.)

Proof (a): First observe that

$$\sum_{n=1}^{\infty} ||\frac{f_n}{n}||_2^2 = \sum_{n=1}^{\infty} \frac{||f_n||_2^2}{n^2} \leq \sum_{n=1}^{\infty} \frac{C^2}{n^2} < \infty.$$

Now, by Beppo-Levi and the above, we have

$$\int \sum_{n=1}^{\infty} (\frac{f_n}{n})^2 d\mu = \sum_{n=1}^{\infty} \int (\frac{f_n}{n})^2 d\mu = \sum_{n=1}^{\infty} ||\frac{f_n}{n}||_2^2 < \infty.$$

Hence, $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.

Proof (b): Since $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$, then $\sum_{n=1}^{\infty} (\frac{f_n}{n})^2 < \infty \mu$ a.e. and as a result $\lim_{n \to \infty} (\frac{f_n}{n}) = 0$

- (2) Let (X, \mathcal{A}, μ) be a finite measure space. Suppose that the real valued functions $f_n, g_n, f, g \in \mathcal{M}(\mathcal{A})$ $(n \ge 1)$ satisfy the following:
 - (i) $f_n \xrightarrow{\mu} f$,
 - (ii) $g_n \xrightarrow{\mu} g$,
 - (iii) $|f_n| \leq C$ for all n, where C > 0.

Prove that $f_n g_n \xrightarrow{\mu} fg$. (2 pts)

Proof: Let $\epsilon > 0$ and $\delta > 0$, since μ is a finite measure, it is enough to show that there exists N > 1 such that

$$\mu(\lbrace x \in X : |f_n q_n - fq| > \epsilon \rbrace) < \delta$$
, for all $n > N$.

First note that

$$|f_n q_n - fq| < |f_n||q_n - q| + |q||f_n - f|,$$

thus,

$$\mu(\{x \in X : |f_n g_n - fg| > \epsilon\}) \le \mu(\{x \in X : |f_n||g_n - g| > \epsilon/2\}) + \mu(\{x \in X : |g_n||f_n - f| > \epsilon/2\}).$$

Let $E_n = \{x \in X : |g| > n\}$, then $E_1 \supseteq E_2 \supseteq \cdots$, and since g is real valued we have $\bigcap_{n=1}^{\infty} E_n = \emptyset$. By finiteness of μ , we have

$$\lim_{n \to \infty} \mu(E_n) = \mu(\bigcap_{n=1}^{\infty} E_n) = 0.$$

Choose m large enough so that $\mu(E_m) < \delta/3$. By properties (i) and (ii), there exists $N \ge 1$ so that for $n \geq N$.

$$\mu(\{x \in X : |f_n - f| > \epsilon/2m\}) < \delta/3$$
, and $\mu(\{x \in X : |g_n - g| > \epsilon/2C\}) < \delta/3$.

Then for all n > N.

$$\mu(\{x \in X : |f_n||g_n - g| > \epsilon/2\}) \le \mu(\{x \in X : |g_n - g| > \epsilon/2C\}) < \delta/3,$$

and

$$\mu(\lbrace x \in X : |g||f_n - f| > \epsilon/2\rbrace) \le \mu(E_m) + \mu(\lbrace x \in E_m^c : |f_n - f| > \epsilon/2m\rbrace) < 2\delta/3.$$

Therefore, $\mu(\{x \in X : |f_n g_n - fg| > \epsilon\}) < \delta$ for all $n \geq N$, and hence $f_n g_n \xrightarrow{\mu} fg$.

- (3) Let (X, A) be a measurable space and let μ, ν be finite measures on A.
 - (a) Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$\int_A (1-f) \, d\mu = \int_A f \, d\nu.$$

(1 pt)

(b) Show that the function f of part (a) satisfies $0 \le f \le 1 \mu$ a.e. (1 pt)

Proof(a): First note that $\mu + \nu$ is a measure (Exercise 4.6(ii)), and that $\mu \ll \mu + \nu$. By using a standard argument (first checking indictor functions, then simple functions, then positive functions, then general integrable functions) one sees that for any $g \in \mathcal{L}^1(\mu + \nu)$ one has $g \in \mathcal{L}^1(\mu) \cap \mathcal{L}^1(\nu)$, and

$$\int g d(\mu + \nu) = \int g d\mu + \int g d\nu.$$

Now the condition $\int_A (1-f) d\mu = \int_A f d\nu$ is equivalent to $\mu(A) = \int_A f d(\mu+\nu)$. Since $\mu \ll \mu+\nu$, then by Radon-Nikodym Theorem there exists $f \in \mathcal{L}^1_+(\mu+\nu)$ such that $\mu(A) = \int_A f d(\mu+\nu)$. Thus, $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ and $\int_A (1-f) d\mu = \int_A f d\nu$ for all $A \in \mathcal{A}$.

Proof(b): Define ρ on \mathcal{A} by $\rho(A) = \int_A f \, d\mu \ (A \in \mathcal{A})$. Since $f \in \mathcal{L}^1_+(\nu)$, then ρ is a finite measure and $\rho \ll \nu$. By part (a), we have $\rho(A) = \int_A (1-f) \, d\mu$, $A \in \mathcal{A}$ and $(1-f) \in \mathcal{L}^1(\mu)$. By Theorem 10.9(ii), we see that if $\mu(A) = 0$, then $\rho(A) = 0$, hence $\rho \ll \mu$. By the Theorem of Radon Nikodym, there exists a unique μ a.e. function $g \in \mathcal{L}^1_+(\mu)$ such that $\rho(A) = \int_A g \, d\mu$ for all $A \in \mathcal{A}$. This gives that

$$\int_A g \, d\mu = \int_A (1 - f) \, d\mu, \text{ for all } A \in \mathcal{A}.$$

By Corollary 10.14(i), we have $g = 1 - f \mu$ a.e. Since $g, f \ge 0$, we get $0 \le f \le 1 \mu$ a.e.

(4) Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function $f(x,t) = e^{-xt}$) that $\int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$, where λ denotes Lebesgue measure. (2 pts)

Proof Let $f:[a,b]\times[0,\infty)$ be given by $f(x,t)=e^{-xt}$. Then f is continuous (hence measurable) and f>0. By Toneli's theorem

$$\int_{[0,\infty)} \int_{[a,b]} e^{-xt} d\lambda(x) \, d\lambda(t) = \int_{[a,b]} \int_{[0,\infty)} e^{-xt} d\lambda(t) \, d\lambda(x).$$

For each fixed $x \in [a, b]$, the function $t \to e^{-xt}$ is positive measurable and the improper Riemann integrable on $[0, \infty)$ exists, so that

$$\int_{[0,\infty)} e^{-xt} d\lambda(t) = \int_0^\infty e^{-xt} dt = \frac{1}{x}.$$

Furthermore, the function $x \to \frac{1}{x}$ is measurable and Riemann integrable on [a, b], thus

$$\int_{[a,b]} \int_{[0,\infty)} e^{-xt} d\lambda(t) \, d\lambda(x) = \int_{[a,b]} \frac{1}{x} \, d\lambda(x) = \int_a^b \frac{1}{x} \, dx = \log(b/a).$$

On the other hand,

$$\int_{[0,\infty)} \int_{[a,b]} e^{-xt} d\lambda(x) \, d\lambda(t) = \int_{[0,\infty)} \int_a^b e^{-xt} dx \, d\lambda(t) = \int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t).$$

Therefore, $\int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$.

- (5) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$ satisfies $f^n \in \mathcal{L}^1(\mu)$ for all $n \geq 1$.
 - (a) Show that if $\lim_{n\to\infty} \int f^n d\mu$ exists and is finite, then $|f(x)| \le 1 \mu$ a.e. (1 pt)
 - (b) Show that $\int f^n d\mu = c$ is a constant for all $n \ge 1$ if and only if $f = \mathbf{1}_A \mu$ a.e. for some measurable set $A \in \mathcal{A}$. (1 pt)

Proof (a) Let $E = \{x \in X : |f(x)| > 1\}$ and assume for the sake of getting a contradiction that

 $\mu(E) > 0$. For $k \ge 1$, let $E_k = \{x \in X : |f(x) > 1 + 1/k\}$. Then E_k is an increasing sequence of measurable set with $E = \bigcup_{k=1}^{\infty} E_k$. Since $\mu(E) > 0$, then there exists $k \ge 1$ sufficiently large such that $\mu(E_k) > 0$. Note that for any $n \ge 1$,

$$f^{2n} = f^{2n} \mathbf{1}_{E_k} + f^{2n} \mathbf{1}_{E_k^c} \ge f^{2n} \mathbf{1}_{E_k} \ge (1 + 1/k)^{2n} \mathbf{1}_{E_k}.$$

Thus, for all $n \geq 1$

$$\int f^{2n} \, d\mu \ge (1 + 1/k)^{2n} \mu(E_k).$$

This implies that

$$\lim_{n \to \infty} \int f^{2n} d\mu \ge \lim_{n \to \infty} (1 + 1/k)^{2n} \mu(E_k) = \infty,$$

contradicting the fact that $\lim_{n\to\infty} \int f^n d\mu < \infty$. Thus $\mu(E) = 0$ and $|f(x)| \le 1$ μ a.e.

Proof (b) If $f = \mathbf{1}_A$ for some measurable set $A \in \mathcal{A}$, then $f^n = \mathbf{1}_A$ for all $n \geq 1$ and hence

$$\int f^n d\mu = \mu(A) \text{ for all } n \ge 1.$$

Conversely, assume $\int f^n d\mu = c$ for all $n \ge 1$. Since $\lim_{n \to \infty} \int f^n d\mu = c$ exists and is finite, then by part (a), we have that $|f(x)| \le 1$ μ a.e. Let $A = \{x \in X : f(x) = 1\}$, $B = \{x \in X : f(x) = -1\}$, and $C = \{x \in X : |f(x)| < 1\}$. Since $f \in \mathcal{M}(\mathcal{A})$, then $A, B, C \in \mathcal{A}$, and $f = \mathbf{1}_A f + \mathbf{1}_B f + \mathbf{1}_C f$ and for any $n \ge 1$,

$$c = \int f^n d\mu = \mu(A) + (-1)^n \mu(B) + \int_C f^n d\mu,$$

as well as

$$c = \lim_{n \to \infty} \int f^n d\mu = \lim_{n \to \infty} \left(\mu(A) + (-1)^n \mu(B) + \int_C f^n d\mu \right).$$

Note that $\lim_{n\to\infty} \mathbf{1}_C f^n(x) = 0$ for all $x \in X$, and $|\mathbf{1}_C f^n(x)| \leq 1$. Since $\mu(X) < \infty$, then $1 \in \mathcal{L}^1(\mu)$, then by Lebesgue Dominated Convergence Theorem,

$$\lim_{n \to \infty} \int_C f^n d\mu = \lim_{n \to \infty} \int \mathbf{1}_C f^n(x) d\mu = \int \lim_{n \to \infty} \mathbf{1}_C f^n(x) d\mu = 0.$$

As a result we have

$$c = \lim_{n \to \infty} \left(\mu(A) + (-1)^n \mu(B) \right).$$

If we take the limit along even n, we get $c = \mu(A) + \mu(B)$, and if we take the limit along odd n, we get $c = \mu(A) - \mu(B)$. This implies that $\mu(B) = 0$, and hence $\mathbf{1}_B f = 0$ μ a.e. Therefore, $c = \mu(A) = \mu(A) + \int_C f^n d\mu = 0$ for all $n \ge 1$, and hence $\int_C f^n d\mu = 0$ for all $n \ge 1$. In particular, $\int_C f^2 d\mu = \int \mathbf{1}_C f^2 d\mu = 0$. Since $\mathbf{1}_C f^2 \ge 0$, this implies that $\mathbf{1}_C f^2 = 0$ μ a.e. and hence $\mathbf{1}_C f = 0$ μ a.e. Thus, $f = \mathbf{1}_A f + \mathbf{1}_B f + \mathbf{1}_C f = \mathbf{1}_A f = \mathbf{1}_A \mu$ a.e.

We give also a second short proof: Note that

$$\int f^2 (1-f)^2 d\mu = \int f^2 d\mu - 2 \int f^3 d\mu + \int f^4 d\mu = c - 2c + c = 0.$$

Since $f^2(1-f)^2 \ge 0$, this implies that $f^2(1-f)^2 = 0$ μ a.e. implying that f is 0 or 1 μ a.e. equivalently f is μ and f is f indicator function f indicator function f is f in f in f is f in f in