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(1) Consider the measure space ([0, 1]B([0, 1]), λ), where B([0, 1]) is the restriction of the Borel σ-
algebra to [0, 1], and λ is the restriction of Lebesgue measure to [0, 1]. Let E1, · · · , Em be a
collection of Borel measurable subsets of [0, 1] such that every element x ∈ [0, 1] belongs to at
least n sets in the collection {Ej}mj=1, where n ≤ m. Show that there exists a j ∈ {1, · · · ,m}
such that λ(Ej) ≥

n

m
. (1 pt)

Solution: By hypothesis, for any x ∈ [0, 1] we have

m∑
j=

1Ej (x) ≥ n. Assume for the sake of

getting a contradiction that λ(Ej) <
n

m
for all 1 ≤ j ≤ m. Then,

n =

∫
[0,1]

ndλ ≤
∫ m∑

j=

1Ej (x) dλ =

m∑
j=1

λ(Ej) <

m∑
j=

n

m
= n,

a contradiction. Hence, there exists j ∈ {1, · · · ,m} such that λ(Ej) ≥
n

m
.

(2) Let (X,F , µ) be a measure space, and 1 < p, q <∞ conjugate numbers, i.e. 1/p+ 1/q = 1. Show
that if f ∈ Lp(µ), then there exists g ∈ Lq(µ) such that ||g||q = 1 and

∫
fg dµ = ||f ||p. (1 pt)

Solution: Note that q(p− 1) = p, so we define g = sgn(f)

(
f

||f ||p

)p−1
. Then,∫

|g|q dµ =

∫
|f |p

||f ||pp
dµ = 1.

So ||g||q = 1 and ∫
fg dµ =

∫
|fg| dµ =

∫
|f |p

||f ||p−1p

dµ = ||f ||p.

(3) Let (X,A) be a measurable space and µ, ν are finite measure on A. Show that there exists a
function f ∈ L1

+(µ) ∩ L1
+(ν) such that for every A ∈ A, we have∫

A

(1− f) dµ =

∫
A

f dν.

(2 pts)

Proof: First note that µ+ν is a measure (Exercise 4.6(ii)), and that µ� µ+ν. By using a stan-
dard argument (first checking indictor functions, then simple functions, then positive functions,
then general integrable functions) one sees that for any g ∈ L1(µ+ ν) one has g ∈ L1(µ)∩L1(ν),
and ∫

g d(µ+ ν) =

∫
g dµ+

∫
g dν.

Now the condition
∫
A

(1−f) dµ =
∫
A
f dν is equivalent to µ(A) =

∫
A
f d(µ+ν). Since µ� µ+ν,

then by Radon-Nikodym Theorem there exists f ∈ L1
+(µ + ν) such that µ(A) =

∫
A
f d(µ + ν).

Thus, f ∈ L1
+(µ) ∩ L1

+(ν) and
∫
A

(1− f) dµ =
∫
A
f dν for all A ∈ A.

1
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(4) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ Lebesgue
measure. Determine the value of

lim
n→∞

∫
(0,n)

(1 +
x

n
)−n(1− sin

x

n
) dλ(x).

(2 pts)

Solution: Let un(x) = 1(0,n)(1+ x
n )−n(1− sin x

n ). The positive sequence
(
(1 + x

n )−n
)
n

decreases

to e−x1(0,∞) and the sequence
(
1− sin x

n

)
n

is bounded from below by 0 and from above by 2 and

converges to 1 as n→∞. Thus, limn→∞ un(x) = 1(0,∞)e
−x, and 0 ≤ un(x) ≤ 2(1 + x

2 )−21(0,∞)

for n ≥ 2 and all x ∈ R. Since the function 2(1 + x
2 )−21(0,∞) is measurable, non-negative and the

improper Riemann integrable on (0,∞) exists, it follows that it is Lebesgue integrable on (0,∞).
By Lebesgue Dominated Convergence Theorem (and taking the limit for n ≥ 2), we have

lim
n→∞

∫
(0,n)

(1 +
x

n
)−n(1− sin

x

n
) dλ(x) = lim

n→∞

∫
un(x)dλ(x)

=

∫
1(0,∞)e

−x dλ(x) =

∫ ∞
0

e−x dx = 1.

(5) Let E1 = E2 = N = {1, 2, 3, · · · }. Let B be the collection of all subsets of N. and µ1 = µ2 be
counting measure on N. Let f : E1 × E2 → R by f(n, n) = n, f(n, n+ 1) = −n and f(n,m) = 0
for m 6= n, n+ 1.
(a) Prove that

∫
E1

∫
E2
f(n,m)dµ2(m)dµ1(n) = 0. (0.75 pt)

(b) Prove that
∫
E2

∫
E1
f(n,m)dµ1(n)dµ2(m) =∞. (0.75 pt)

(c) Explain why parts (a) and (b) do not contradict Fubini’s Theorem. (0.5)

Proof (a) For each fixed n one has∫
E2

f(n,m)dµ2(m) = f(n, n)µ2({n}) + f(n, n+ 1)µ2({n+ 1}) = 0.

Thus,
∫
E1

∫
E2
f(n,m)dµ2(m)dµ1(n) = 0.

Proof (b) For each fixed m,∫
E1

f(n,m)dµ1(n) = f(m,m)µ1({m}) + f(m− 1,m)µ1({m− 1}) = 1.

Thus,
∫
E2

∫
E1
f(n,m)dµ1(n)dµ2(m) =

∫
E2

1dµ2(m) = µ2(E2) =∞.

Proof (c) Parts (a) and (b) do not contradict Fubini’s Theorem because the function f is not
µ1 × µ2 integrable. This follows from∫

E1

∫
E2

|f(n,m)|dµ2(m)dµ1(n) =

∫
E1

2ndµ1(n) =

∞∑
n=1

2n =∞.

(6) Let (X,A, µ) be a σ-finite measure space, and (fj) a uniformly integrable sequence of measurable
functions. Define Fk = sup1≤j≤k |fj | for k ≥ 1.

(a) Show that for any w ∈M+(A),∫
{Fk>w}

Fk dµ ≤
k∑
j=1

∫
{|fj |>w}

|fj | dµ.

(0.5)
(b) Show that for every ε > 0, there exists a wε ∈ L1

+(µ) such that for all k ≥ 1∫
X

Fk dµ ≤
∫
X

wε dµ+ kε.

(1 pt)
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(c) Show that

lim
k→∞

1

k

∫
X

Fk dµ = 0.

(0.5 pt)

Proof (a) Let w ∈M+(A), then∫
{Fk>w}

Fk dµ ≤
k∑
j=1

∫
{Fk>w}∩{|fj |=Fk}

Fk dµ

≤
k∑
j=1

∫
{|fj |>w}

|fj .| dµ.

Proof (b) Let ε > 0. By uniform integrability of the sequence (fj) there exists wε ∈ L+(µ) such

that ∫
{|fj |>wε}

|fj | dµ < ε

for all j ≥ 1. By part (a)∫
{Fk>wε}

Fk dµ ≤
k∑
j=1

∫
{|fj |>wε}

|fj | dµ ≤ kε.

Now, ∫
X

Fk dµ =

∫
{Fk>wε}

Fk dµ+

∫
{Fk≤wε}

Fk dµ

≤ kε+

∫
X

wε dµ.

Proof (c) For any ε > 0, by part (b),

1

k

∫
X

Fk dµ ≤
1

k

∫
X

wε dµ+ ε.

Thus,

lim sup
k→∞

1

k

∫
X

Fk dµ ≤ ε,

for any ε. Since Fk ≥ 0, we see that

lim sup
k→∞

1

k

∫
X

Fk dµ = lim
k→∞

1

k

∫
X

Fk dµ = 0.


