Mathematisch Instituut 3584 CD Utrecht

Measure and Integration: Extra Retake Final 2015-16

(1) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1,\dots,E_m be a
collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at
least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1,\dots,m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$. (1 pt)

Solution: By hypothesis, for any $x \in [0,1]$ we have $\sum_{j=1}^{m} \mathbf{1}_{E_j}(x) \geq n$. Assume for the sake of getting a contradiction that $\lambda(E_j) < \frac{n}{m}$ for all $1 \leq j \leq m$. Then,

$$n = \int_{[0,1]} n \, d\lambda \le \int \sum_{j=1}^m \mathbf{1}_{E_j}(x) \, d\lambda = \sum_{j=1}^m \lambda(E_j) < \sum_{j=1}^m \frac{n}{m} = n,$$

a contradiction. Hence, there exists $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$.

(2) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$. (1 pt)

Solution: Note that q(p-1)=p, so we define $g=\mathrm{sgn}(f)\left(\frac{f}{||f||_p}\right)^{p-1}$. Then,

$$\int |g|^q \, d\mu = \int \frac{|f|^p}{||f||_p^p} \, d\mu = 1.$$

So $||g||_q = 1$ and

$$\int fg \, d\mu = \int |fg| \, d\mu = \int \frac{|f|^p}{||f||_p^{p-1}} \, d\mu = ||f||_p.$$

(3) Let (X, A) be a measurable space and μ, ν are finite measure on A. Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in A$, we have

$$\int_A (1-f) \, d\mu = \int_A f \, d\nu.$$

(2 pts)

Proof: First note that $\mu + \nu$ is a measure (Exercise 4.6(ii)), and that $\mu \ll \mu + \nu$. By using a standard argument (first checking indictor functions, then simple functions, then positive functions, then general integrable functions) one sees that for any $g \in \mathcal{L}^1(\mu + \nu)$ one has $g \in \mathcal{L}^1(\mu) \cap \mathcal{L}^1(\nu)$, and

$$\int g d(\mu + \nu) = \int g d\mu + \int g d\nu.$$

Now the condition $\int_A (1-f) d\mu = \int_A f d\nu$ is equivalent to $\mu(A) = \int_A f d(\mu+\nu)$. Since $\mu \ll \mu+\nu$, then by Radon-Nikodym Theorem there exists $f \in \mathcal{L}^1_+(\mu+\nu)$ such that $\mu(A) = \int_A f d(\mu+\nu)$. Thus, $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ and $\int_A (1-f) d\mu = \int_A f d\nu$ for all $A \in \mathcal{A}$.

(4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure. Determine the value of

$$\lim_{n \to \infty} \int_{(0,n)} (1 + \frac{x}{n})^{-n} (1 - \sin \frac{x}{n}) d\lambda(x).$$

(2 pts)

Solution: Let $u_n(x) = \mathbf{1}_{(0,n)}(1+\frac{x}{n})^{-n}(1-\sin\frac{x}{n})$. The positive sequence $\left((1+\frac{x}{n})^{-n}\right)_n$ decreases to $e^{-x}\mathbf{1}_{(0,\infty)}$ and the sequence $(1-\sin\frac{x}{n})_n$ is bounded from below by 0 and from above by 2 and converges to 1 as $n \to \infty$. Thus, $\lim_{n \to \infty} u_n(x) = \mathbf{1}_{(0,\infty)} e^{-x}$, and $0 \le u_n(x) \le 2(1 + \frac{x}{2})^{-2} \mathbf{1}_{(0,\infty)}$ for $n \geq 2$ and all $x \in \mathbb{R}$. Since the function $2(1+\frac{x}{2})^{-2}\mathbf{1}_{(0,\infty)}$ is measurable, non-negative and the improper Riemann integrable on $(0, \infty)$ exists, it follows that it is Lebesgue integrable on $(0, \infty)$. By Lebesgue Dominated Convergence Theorem (and taking the limit for $n \geq 2$), we have

$$\lim_{n \to \infty} \int_{(0,n)} (1 + \frac{x}{n})^{-n} (1 - \sin \frac{x}{n}) d\lambda(x) = \lim_{n \to \infty} \int u_n(x) d\lambda(x)$$
$$= \int \mathbf{1}_{(0,\infty)} e^{-x} d\lambda(x) = \int_0^\infty e^{-x} dx = 1.$$

- (5) Let $E_1 = E_2 = \mathbb{N} = \{1, 2, 3, \dots\}$. Let \mathcal{B} be the collection of all subsets of \mathbb{N} . and $\mu_1 = \mu_2$ be counting measure on \mathbb{N} . Let $f: E_1 \times E_2 \to \mathbb{R}$ by f(n,n) = n, f(n,n+1) = -n and f(n,m) = 0for $m \neq n, n+1$.
 - (a) Prove that $\int_{E_1} \int_{E_2} f(n,m) d\mu_2(m) d\mu_1(n) = 0$. (0.75 pt) (b) Prove that $\int_{E_2} \int_{E_1} f(n,m) d\mu_1(n) d\mu_2(m) = \infty$. (0.75 pt)

 - (c) Explain why parts (a) and (b) do not contradict Fubini's Theorem. (0.5)

Proof (a) For each fixed n one has

$$\int_{E_2} f(n,m)d\mu_2(m) = f(n,n)\mu_2(\{n\}) + f(n,n+1)\mu_2(\{n+1\}) = 0.$$

Thus, $\int_{E_1} \int_{E_2} f(n, m) d\mu_2(m) d\mu_1(n) = 0$.

Proof (b) For each fixed m,

$$\int_{E_1} f(n,m)d\mu_1(n) = f(m,m)\mu_1(\{m\}) + f(m-1,m)\mu_1(\{m-1\}) = 1.$$

Thus, $\int_{E_2} \int_{E_1} f(n, m) d\mu_1(n) d\mu_2(m) = \int_{E_2} 1 d\mu_2(m) = \mu_2(E_2) = \infty$.

Proof (c) Parts (a) and (b) do not contradict Fubini's Theorem because the function f is not $\mu_1 \times \mu_2$ integrable. This follows from

$$\int_{E_1} \int_{E_2} |f(n,m)| d\mu_2(m) d\mu_1(n) = \int_{E_1} 2n d\mu_1(n) = \sum_{n=1}^{\infty} 2n = \infty.$$

- (6) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and (f_i) a uniformly integrable sequence of measurable functions. Define $F_k = \sup_{1 \le j \le k} |f_j|$ for $k \ge 1$.
 - (a) Show that for any $w \in \overline{\mathcal{M}}^+(\mathcal{A})$,

$$\int_{\{F_k > w\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

(b) Show that for every $\epsilon > 0$, there exists a $w_{\epsilon} \in \mathcal{L}^1_+(\mu)$ such that for all $k \geq 1$

$$\int_X F_k \, d\mu \le \int_X w_\epsilon \, d\mu + k\epsilon.$$

(1 pt)

(c) Show that

$$\lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

(0.5 pt)

Proof (a) Let $w \in \mathcal{M}^+(\mathcal{A})$, then

$$\int_{\{F_k > w\}} F_k \, d\mu \leq \sum_{j=1}^k \int_{\{F_k > w\} \cap \{|f_j| = F_k\}} F_k \, d\mu$$

$$\leq \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

Proof (b) Let $\epsilon > 0$. By uniform integrability of the sequence (f_j) there exists $w_{\epsilon} \in \mathcal{L}^+(\mu)$ such that

$$\int_{\{|f_j| > w_{\epsilon}\}} |f_j| \, d\mu < \epsilon$$

for all $j \ge 1$. By part (a)

$$\int_{\{F_k > w_{\epsilon}\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w_{\epsilon}\}} |f_j| \, d\mu \le k\epsilon.$$

Now,

$$\int_X F_k d\mu = \int_{\{F_k > w_{\epsilon}\}} F_k d\mu + \int_{\{F_k \le w_{\epsilon}\}} F_k d\mu
\le k\epsilon + \int_X w_{\epsilon} d\mu.$$

Proof (c) For any $\epsilon > 0$, by part (b),

$$\frac{1}{k} \int_X F_k \, d\mu \le \frac{1}{k} \int_X w_\epsilon \, d\mu + \epsilon.$$

Thus,

$$\limsup_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu \le \epsilon,$$

for any ϵ . Since $F_k \geq 0$, we see that

$$\limsup_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = \lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$