Measure and Integration: Final Exam 2020-21

(1) Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{L}^1(\mu)$. Define the mesure ν on \mathcal{A} by $\nu(A) = \int_A |u| d\mu$. Prove that for any $v \in \mathcal{L}^1(\nu)$, one has

$$\int v \, d\nu = \int |u| v \, d\mu.$$

(1.5 pts)

- (2) Consider the measure space $((0,1),\mathcal{B}((0,1)),\lambda)$, where $\mathcal{B}((0,1))$ is the Borel σ -algebra restricted to the interval (0,1) and λ is the restriction of Lebesgue measure to (0,1). Let $u \in \mathcal{L}^2(\lambda)$ be non-negative and monotonically increasing.
 - (a) Prove that for any $x \in (0,1)$, $\inf_{n \ge 1} u(x^n) = \inf_{y \in (0,1)} u(y)$. (0.5 pt)
 - (b) Let $w_n(x) = x \cdot u(x^n)$, $n \ge 1$. Prove that $w_n \in \mathcal{L}^2(\lambda)$ for all $n \ge 1$, and that $\lim_{n \to \infty} ||w_n(x)||_2 = \inf_{y \in (0,1)} u(y) \cdot \frac{\sqrt{3}}{3}$. (2 pts)
 - (c) Prove that $\lim_{n\to\infty}\int_{(0,1)}x^ne^{x/n}u(x)\,d\lambda(x)=0.$ (1 pt)
- (3) Let (X, \mathcal{A}, μ) be a measure space and $1 . Suppose <math>(u_n)_{n \in \mathbb{N}} \subset \mathcal{L}^p(\mu)$ with $||u_n||_p \le \frac{1}{2p+1}$ for $n \ge 1$. Prove that $\left|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\right| < \infty$ μ a.e. (2 pts)
- (4) Consider the product space $([1,2] \times [0,\infty), \mathcal{B}([1,2]) \otimes \mathcal{B}([0,\infty)), \lambda \times \lambda)$, where λ is Lebesgue measure restricted to the appropriate space. Consider the function $f:[1,2] \times [0,\infty) \to [0,\infty)$ defined by $f(x,t) = e^{-2xt} \mathbb{I}_{(0,\infty)}(t)$.
 - (a) Prove that $f \in \mathcal{L}^1(\lambda \times \lambda)$. (2 pts)
 - (b) Prove that $\int_{(0,\infty)} (e^{-2t} e^{-4t}) \frac{1}{t} d\lambda(t) = \ln(2)$. (1 pt)