Measure and Integration: Mid-Term, 2024-25

- (1) Let (X, \mathcal{A}, μ) be a finite measure space (i.e. $\mu(X) < \infty$) and $T: X \to X$ an \mathcal{A}/\mathcal{A} measurable map.
 - (a) Let $\mathcal{C}=\{A\in\mathcal{A}:A=T^{-1}A\}.$ Prove that \mathcal{C} is a σ -algebra. (1 pt)
 - (b) Let $\mathcal{D} = \{A \in \mathcal{A} : \mu(A) = \mu(T^{-1}A)\}$. Prove that \mathcal{D} is a Dynkin system, and that $\mathcal{C} \subseteq \sigma(\mathcal{D}) \subseteq \mathcal{A}$. (1.5 pts)
 - (c) Suppose $\{\nu_n\}$ is an increasing sequence of measures defined on \mathcal{A} (here increasing means that $\nu_n(A) \leq \nu_{n+1}(A)$ for all $A \in \mathcal{A}$ and all $n \in \mathbb{N}$). Define ν on \mathcal{A} by $\nu(A) = \lim_{n \to \infty} \nu_n(A)$. Prove that ν is a measure. (1.5 pts)
- (2) Let (X, \mathcal{A}, μ) be a measure space. For $A \in \mathcal{A}$ let

$$S(A) = \{ B \in \mathcal{A} : B \subseteq A, \mu(B) < \infty \}.$$

Define $\nu : A \to [0, \infty]$ by $\nu(A) = \sup \{ \mu(B) : B \in S(A) \}.$

- (a) Show that ν is monotone, i.e. if $A_1, A_2 \in \mathcal{A}$ such that $A_1 \subseteq A_2$, then $\nu(A_1) \leq \nu(A_2)$. (0.5 pts)
- (b) Show that if $A \in \mathcal{A}$ with $\mu(A) < \infty$, then $\nu(A) = \mu(A)$. (1 pt)
- (c) Show that ν is σ -subadditive on \mathcal{A} . (1.5 pts)
- (3) Consider the measure space ([0,1), $\mathcal{B}([0,1))$, λ), where $\mathcal{B}([0,1))$ is the Borel σ -algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Define a function $F:[0,1)\to[0,1)$ by

$$F(x) = \sum_{n=0}^{\infty} \left(\frac{3^{n+1}x}{2} - \frac{1}{2} \right) \cdot \mathbb{I}_{\left(3^{-(n+1)}, 3^{-n}\right)}(x),$$

where \mathbb{I}_A denotes the indicator function of the set A.

- (a) Show that F is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable. (1 pt)
- (b) Prove that the image measure $F(\lambda) = \lambda \circ F^{-1}$ satisfies $F(\lambda) = \lambda$. (2 pts)