Measure and Integration: Final, 2023-24

You are allowed to bring the old three A4's (two-sided) used for the mid-term and a new three A4's (two-sided) covering the material after the mid-term

- (1) Let (X, \mathcal{A}, μ) be a probability space and $u \in \mathcal{M}(\mathcal{A})$. Assume that $u^2, u^4 \in \mathcal{L}^1(\mu)$ with $\int u^4 d\mu = \int u^2 d\mu = 1$.
 - (a) Prove that $(u^2 1)^2 \in \mathcal{L}^1(\mu)$ and that $\int (u^2 1)^2 d\mu = 0$. (1 pt)
 - (b) Prove that there exists a simple function $f \in \mathcal{E}$ taking three values -1.0 and 1 such that $u = f/\mu$ a.e. (1.5 pts)
 - (c) Prove that for $n \ge 1$, $\int u^{2n} d\mu = 1 \text{ and } \int u^{2n-1} d\mu = \mu(\{x \in X : u(x) = 1\}) - \mu(\{x \in X : u(x) = -1\}).$ (1 pt)
- (2) Consider the measure space [0,1], $\mathcal{B}([0,1]),\lambda)$ where λ is Lebesgue measure on [0,1]. Define $u_n(x) = \frac{n^2x\sin(nx)}{1+n^4x^2}$ for $x \in [0,1]$ and $n \ge 1$. Show that

$$\lim_{n\to\infty}\int_{[0,1]}u_n\,d\lambda(x)=0.$$

(1.5 pts)

- (3) Let (X, \mathcal{A}, μ) be a measure space and $p \in [1, \infty)$.
 - (a) Let $(u_n)_{n\geq 1}$ be a sequence in $\mathcal{L}^{\infty}(\mu)$ such that $\sum_{n\geq 1} ||u_n||_{\infty} < \infty$. Prove that $\sum_{n\geq 1} u_n \in \mathcal{L}^{\infty}(\mu)$ and that $||\sum_{n\geq 1} u_n||_{\infty} \leq \sum_{n\geq 1} ||u_n||_{\infty}$, (1 pt)
 - (b) Prove that if $u \in \mathcal{L}^p(\mu)$, then $\lim_{n \to \infty} n^p \mu(\{x \in X : |u(x)| > n\}) = 0$. (1.5 pts)
- (4) Let $X=Y=\mathbb{Z}_+=\{0,1,2,3,\cdots\}$ and $(a_n)_{n\geq 0}$ a sequence of positive real numbers such that $\sum_{n\geq 0}a_n<\infty$. Let \mathcal{A} be the collection of all subsets of \mathbb{Z}_+ and $\mu_1=\mu_2$ be counting measure on \mathbb{Z}_+ . i.e. $\mu_1=\mu_2=\sum_{n\geq 0}\delta_n$, where δ_n is Dirac measure concentrated at n. Let $u:X\times Y\to\mathbb{R}$ be defined by

$$u(n,m) = \begin{cases} 1 + a_n & \text{if } n = m, \\ -1 - a_n & \text{if } n = m + 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Prove that $\int_X \int_Y u(n,m) d\mu_2(m) d\mu_1(n) = 1 + a_0$. (1 pt)
- (b) Prove that $\int_Y \int_X u(n,m) d\mu_1(n) d\mu_2(m) = a_0$. (1 pt)
- (c) Explain why parts (a) and (b) do not contradict Fubini's Theorem. (0.5 pt)

