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1. Let ¢ : [A, B] — [a,b] be a strictly increasing surjective continuous function. Sup-
pose ¢ : [a,b] — R is non-decreasing, and f : [a,b] — R a bounded t-Riemann
integrable function. Define o and g on [A, B] by

a(y) =v(o(y)) and g(y) = f(o(v))-

Show that g is a-Riemann integrable, and

/ABgdoz:/abfd@Z).

Proof: Since ¢ is strictly increasing surjective and continuous, then the inverse map
¢! has the same properties. Hence, for any finite non-overlapping cover

C={la=ap,ai], -, [an 1, a, = b]}
of [a, b] corresponds a unique finite non-overlapping cover
C, = (b_l(C) = {[A07 A1]7 Tty [Anfh An]}

of [A, B] such that Ay = A, By = B and A; = ¢ !(a;). Conversely, with any finite
non-overlapping cover

C/ = {[A = AOaAl]a Ty [An—laAn = B]}
of [A, B] corresponds a unique finite non-overlapping cover

C = ¢(C/) = {[CLOa al]a Tty [a'n—la a'n]}
of [a,b] such that ay = a, by = b and a; = ¢(4;). Furthermore, U(g|c;C") =
U(flh; (C)) and L(gle; C') = L(f|1h; $(C")).
Let € > 0, since f is ¥-Riemann integrable there exists a § > 0 such that if C is a
finite non-overlapping cover of [a, b] with ||C|| < ¢, then

U(f|;C) — LIf|:C) < e.

Thus, for any finite non-overlapping cover C’ of [A, B] such that [|¢(C’)|| < ¢ one
has

U(gla; C') = L{glea; C) = U(fIh;C) — L(f11h; C) <e.

Thus,
igfl/l(g|oz;C') —sup L(g|a; C') < e.
C/
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Therefore, g is a-Riemann integrable. Since,

inftd(gle; C') = mf U(f|¢;C)

/ABgdoz:/abfd@Z).

. Let {c,} be a sequence satisfying ¢, > 0 for all n > 1, and > 7, ¢, < oo. Let
{sn} be a sequence of distinct points in (a,b). Define a function ¢ on [a,b] by
Y(x) =07 eals,n(x), where 15, 4 is the indicator function of the interval (s, b].
Prove that any continuous function f on [a, b is ¥-Riemann integrable, and

/f i (a chfsn

it follows that

Proof: Clearly v is non-decreasing. Assume with no loss of generality that s; <
Sy < 83 < ---, and let f be continuous on [a, b]. By Theorem 1.2.10, f is ¢)-Riemann

integrable. We now show that ff f(@)d(z) =37 ¢nf(sn). Let € > 0, there exists
a positive integer N such that ) >° ¢, < € for all m > N. Choose any m > N,

let Y1(x) = Y0 cul(s,p(z) and ¥o(z) = ZzozmH cnl(s,p)(x). Then, f is ¢ and

1o-Riemann integrable, and

/f )z /f )i (z /f Yol

Notice that 1 is constant on the intervals [a, s1], (s1, 2], -, (Sm,b] with values
0,c1,¢4 +Coy- -+, 1 + o+ - - - + ¢, respectively. Thus by problem 2 in Exercises 2,

m

/ﬂMM@zZ%Mw

n=1

Now, 1(b) = >°0° ¢, < € and ¥o(a) = 0, thus by Theorem 1.2.10,

n=m+1

\/ f(@)dipa (@) < [|fllu(2(b) — ¢2(a)) < [[f]]ue-

Therefore, for each m > N,

M& i Z%muw/fd%n<mm
This implies that

/memzz%mw

. Let I' C R™. Recall that the inner Lebesque measure of I' is defined by
IT|; =sup{|K|: K CT, K is compact}.

Prove the following.



(a) Assume |I'|, < oo, then I is Lebesgue measurable if and only if |I'|. = |T'|;.

(b) Assume |[I'| < oo, then I' is Lebesgue measurable if and only if |A|. =
TN A|.+ TN Al for all A C R™.

(¢) If ACT, and I is Lebesgue measurable, then |A|. + |['\ A|; = |T|.

Proof (a): Suppose I' is Lebesgue measurable, in this part we don’t need the
finiteness of I'|.. By problem 3 in Exercises 4 we have |I'|; < |I'|, = |[T'|. We will
show that |I'| < |I'|;. Let € > 0, since I'° is measurable, there exists an open set
G such that I C G and |G\ T°| < e. Let F' = G°, then F is closed, FF C I and
I\ F|=|G\TI°| <e Let K, = FNB(0,n) for n > 1. Then, {K,} is an increasing
sequence of compact sets such that F = (J 2, K. Hence, |F| = lim,_ |K,|. If
|F| = oo, then |I'| = |T'|; = co. Assume |F| < oo. Then, there exists a positive
integer N such that |F| < |K,| + € for all n > N. Let n > N, then

Tl < [F]+ [T\ F| < [F|+ e < [Kn| +2e < [I']; + 2¢.

Since € > 0 is arbitrary, it follows that |I'| < |T'|;. Therefore, |I'|o = |T'|;.

Conversely, suppose |[['|o = |I'|; < co. Let € > 0, then there exist a compact set K
and an open set G such K CI' C G, |K| > |T'|e — € and |G| < |T'|. + €. Since K is
compact, then |K| < co. Hence, |G\ 'l < |G\ K| = |G| — |K| < 2¢. Therefore, I’
is Lebesgue measurable.

Proof (b): Suppose I' is Lebesgue measurable (we do not need finiteness of |I'|.),
and let A be any subset of R". By subadditivity of the outer Lebesgue measure, we
have |A|. < |['NA|.+|°NA|.. We prove the reverse inequality. Since I" is Lebesgue
measurable, for any open set G containing A, one has

|G| =|GNT|+|GNT°| > [ANT|. + |[ANT°[..

Thus,
|Al. = inf{|G|: AC G,G open} > |ANT|. +|ANT?..

Conversely, assume |I'|, < oo, and suppose |A|. = [['NA|.+|T°NA|. for all A C R™.
By the hypothesis, for any open set G' containing I', one has |G| = |G NT|. + |G N
I'“le = |T|e + |G\ T'|e. Since |I'|e < oo, then |G\ T'|. = |G| — |T'|. Let € > 0, there
exists an open set G containing I" such that |G| < |T'|. + ¢, then |G\ I'|, < e. Thus,
I' is measurable.

Proof (c): For any open set G containing A,
|Gle + T\ Al; > |GNT|.+|T'\G|;=|GNT|+|I'\G| =T
Taking the infimum over open sets G containing A, we get |A|. + [['\ A|; > |T'].
Now, for any compact set K CT'\ A,
[Ale + [K] < [T\ Kle + [K| = [[\ K| + | K| = |T']

Taking the supremum over compact subsets K of I'\ A, we get |A|.+ |['\ A|; < |T.
Thus, |A|. + [T\ A|; = |T).



4. Let E be a set, and A an algebra over E. Let u: A — [0, 1] be a function satisfying

(D w(E) =1=1-pu(0),
(IT) if Ay, Ay, - -+, € A are pairwise disjoint and |J,~,; 4, € A, then

p(U A = 3 u(A)

(a) Show that if {A,} and {B,} are increasing sequences in A such that [ J~ ; A, C
U2, By, then lim, oo p(Ay) < limy, o0 p1(By).

(b) Let G be the collection of all subsets G of E such that there exists an increasing
sequence {A,} in A with G =J ~, A,,. Define fi on G by

a(G) = lim p(A,),

where {A,} is an increasing sequence in A such that G = [J. 2 A,. Show the
following.

(i) 7z is well defined.
(i) If G1,Gy € G, then G; U Gy, G1 NGy € G and

(G U G2) + (G N Ga) =1(Gh) + 1(Ga).

(iii) f G, € Gand Gy C Gy C - -+, then |J,~, G, € G and

Al Ga) = lim 7(G,).
n=1

(¢) Define * on P(E) (the power set of E) by
pf(A) = inf{f(G): AC G, G G}
(i) Show that p*(G) = fi(G) for all G € G, and
P (AU B) +p" (AN B) < p*(A) + p"(B)

for all subsets A, B of E. Conclude that p*(A)+ p*(A°) > 1 forall A C E.
(ii) Show that if ¢ C Cy C --- are subsets of E and C' = |J,_, C,, then
p(C) = limy, . " (Cy).
(iii) Let H={B C E: u*(B) 4+ p*(B°) = 1}. Show that H is a o-algebra over
E., and p* is a measure on H.

(iv) Show that o(F;.A) C H. Conclude that the restriction of p* to o(E;.A) is
a measure extending p, i.e. pu*(A) = p(A) for all A € A.

Proof (a): Using the same proof as in Theorem 3.1.6 (i), one can easily show that
if {D,} is an increasing sequence in A such that |, D, € A, then p(J, Dn) =
limy, o 14(Dy,). Suppose that {A4,} and {B,} are increasing sequences in A such
that U~ A, € U, Bn. For each m > 1, {A,, N B, : n > 1} is an increasing
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sequence in A and A, = A, NU,—, B, = U.— (A, N B,) € A. Thus, for each
m>1,
w(Ay) = lim p(A, N B,) < lim u(B,).

n—oo n—oo

Taking the limit as m — oo, we get lim,, o t(Ay) < limy, oo p(By).

Proof (b)(i): Let G € G. If {A,} and {B,} are two increasing sequences in A such
that G = U,—, A, = U,—, Bn. Then, by part (a) lim,, . p(Ay) = lim, o0 p(By).
This shows that 1 is well defined on G.

Proof (b)(ii): Let Gi,Gy € G, there exist increasing sequences {A,}, {B,} in
A such that Gy = | —, A, and Gy = |J,—, B,. Then, {4, U B,}, {4, N B,} are
increasing sequences in G such that G; U Gy = (A, U B,) and G; N Gy =
U,—,(A, N B,). Thus, G; U G2, G1 N Gy € G. By definition of T,

(G1UGy) = lim p(A, U By)
= nlLIIC}O (,u(An) + M(Bn) - N(An N Bn))
= ﬁ(Gl) + H(G2> - ﬁ(Gl N G2)

Proof (b)(iii): For each n > 1 there exists an increasing sequence {A,,, : m > 1}
in A such that G, = U >_; Apm. Let D, = U, Ap for m > 1, then {D,,}

m=1
is an increasing sequence in A. For each n < m, A,,, € D,, € G,,. and hence

W(Anm) < (Dy) < T(Grn). We will show that | J)2, G, =, D
For any n > 1,

Gn =

Cg

= m=1 m=1

m=1 m=n

Thus,

Lo Y mme U6

Hence, ., G, = Uo—y Dy, and U, , G, € G. From p(Anm) < w(Dy) < 1(Gh),

n < m one gets for each n > 1,

w(Gr) = lim p(Anm) < lim u(Dy,) UG ) < lim @(Gy,).

m—o00 m—o00 m—o00
n=1

Taking the limit as n — oo, we get
lim p(G U Gr)

Proof (c)(i): Let G € G, by definition of p*, p*(G) < u(G). Notice that part(a)
implies that & is monotone. Hence, for any G’ € G containing G we have u(G) <
1(G"). Taking the infimum over all sets G’ € G containing G we get i(G) < p*(G).
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Now, let A, B be any two subsets of E and let € > 0. There exist sets G1, Gy € G such
that @(G1) < p*(A)+e, and fi(G2) < p*(B)+e€. By part (b)(ii), ANB C G1NGy € G
and AU B C G; UGy € G, hence

p(AUB)+p" (ANB) < (G1UG)+1(G1NG2) = 1(Gh)+7(Ga) < p"(A)+p"(B)+2€.

Since € > 0 is arbitrary, it follows that p*(AUB)+u*(ANB) < p*(A)+p*(B). Finally,
taking B = A® and noticing that p*(E) =1 =1— pu*(0), we get 1 < p*(A) + p*(A°)
forall ACE.

Proof (c)(ii): Let {C,} be an increasing sequence of subsets of £ and let C' =
U~ C,. Since p* is clearly monotone, it follows that p*(C,) < p*(C) for all n > 1.
Hence, lim,, o #*(C,) < p*(C). We now prove the reverse inequality. Let ¢ > 0, for
each n choose G,, € G such that (G,) < u*(C,) + 2—€n Let G =, ,G, and F,, =
U _, Gy. Then, C' C G, {F,} is an increasing sequence in G and G = [ J.~, F,,. By
part (b)(iii), G € G and p*(C) < p*(G) = lim,,_ p*(F,). Finally, using induction,
one can easily show that p*(F,) = u(F,) < p*(C,) + >, ; From this it follows
that
p*(C) < lim p*(F,) < lim u*(C,) + €.

m—00 n—oo

Thus, p*(C) < lim, . p*(Cy).

Proof (c)(iii): Clearly, ) € H and H is closed under complementation. We first
show that H is an algebra. Let Hy, Hy € H. By part (c¢)(i),

pt(Hy U Hy) + p*(Hy O Hy) < p*(Hy) + p* (Hy)

and
p((Hi U Ha)®) + w0 ((Hy N Hp)®) < p'(HY) + w0t (H3).

Adding both equations, and using that Hy, H, € H and the last conclusion of part
(b)(i), we get

2 < p'(HyU Hy) + p*((Hy U Ho)®) + p(Hy N Hy) + p*((Hy N Hy)) = 2.

Since, p*(H UH2)+p*((H1UH5)%) > 1 and p*(HiNHy)+p*((H1NH3)¢) > 1, we must
have that p*(H; U Hs) + p*((Hy U Hy)¢) = 1 and p*(Hy N Hy) + p*((H1 N Hy)%) = 1.
Thus, Hy U Hy, H N Hy € 'H and ‘H is an algebra. Furthermore, from the above
anlaysis we must have p*(Hy U Ho) + p*(Hy N He) = p*(Hy) + p*(Hy) otherwise
the sum of the first two displayed equations would be less than 2, a contradiction.
Thus, p* is additive on H.

We now show that H is a o-algebra. Let Hy, Hy,---,€ H and let H =~ H,. To
show that H € H, it is enough to show that u*(H) + p*(H¢) <1 (see part (c)(i)).
Let G, = U _, Hy. Since H is an algebra, then {G,} is an increasing sequence
in H such that H = J~, G,,. Hence, by part (c)(ii), p*(H) = lim,, o #*(G). Let
€ > 0, there exists a positive integer N such that p*(H) < pu*(Gp) +¢€ for alln > N.
Now, H® C G¢, hence p*(H) < p*(G¢) for all n > 1. For any n > N, we have

pr(H) 4+t (H) < (Gn) + p7(Gr) +e=1+¢€
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Since, € > 0 is arbitrary, it follows that p*(H)+p*(H¢) < 1. Thus, H € ‘H, and H is
o-algebra. Finally, we show that p* is o-additive on H. Let Hy, Hy, - - -, € 'H be pair-
wise disjoint, and let G,, = G, = J\_; Hp. Then, {G,} is an increasing sequence
in H such that | J>7, H, = J ~, G,,. By part (c)(ii) and the (finite) additivity of u*
on H, we get

(U ) = Jim (6 —JL%OZM =3

n=1 m=1

Thus, p* is a measure on H.

Proof (c)(iv): Since A C G, it is enough to show that G C H. Let G € G, and
{A,} an increasing sequence in A such that G = |J)_, A,. By part (b), a(G) =
1 (G) = lim,,_, (A,). Notice that for each n > 1, u(A4,) = u(A,) = p*(A,), and
G° C AS. Thus, for each n > 1,

p(An) + p7(G) < p(An) + p(A7) =1
Taking the limit as n — oo we get,

pH(G) +pt(G) <1

By part (c)(i), this implies that u*(G) + p*(G°) = 1, and hence G € ‘H. Therefore,
o(E; A) CH and the restriction of u* to o(F;.A) is a measure extending p.

. Let Bg~ be the Lebesgue o-algebra over RV, By~ the Borel o-algebra over RY, and
Bg the Borel o-algebra over R = [~00, 00]. Denote by Ag~ the Lebesgue measure
on Bgn. Let f : RY — [—o00, 0] be Lebesgue measurable (i.e. f~1(A) € Brn for
all A € Bg). Show that there exists a function g : RY — [—o00, 0o] which is Borel
measurable (i.e. g7'(A) € Bgn for all A € By) such that

M ({0 € RY 2 f(2) # g(2)}) = 0.
(Hint: assume first that f is a non-negative simple function)

Proof: Assume first that f is a non-negative Lebesgue measurable simple function.
Then f has the form f = "  a;1a,, where ay,as,---,a, are all distinct, and
Ay, Ay, -+, A, € Bgn are pairwise disjoint. Since every Lebesgue set is the disjoint
union of a Borel Set and Lebesgue set of Lebesgue measure zero, it follows that
for each i = 1,2,---,n A; = B; UN;, where B; € Bg, and A\gn(V;) = 0. Let
g = > a;lp, then g is Borel measurable, and Agv ({z € RN : f(2) # g(z)}) <
Arny (U N;) = 0. Now assume f is a non-negative Lebesgue measurable function.
Then there exists an increasing sequence {¢,} of non-negative Lebesgue measurable
simple functions such that f = lim, .. ¢, = sup,, ¢,. Each ¢, has the form ¢, =
S a1 A(m > Where agn) are all distinct and AE") € Bgv. Further, A(") = B(") U

i=1""
Ni(n) (disjoint union), where Bi(n) € By and )\RN(NZ'(”)) = 0. Set g, = >\ En)l

then g, is Borel measurable, 0 < g, < ¢,, and Agn (¢, # gn) < Apn (U Ni(”)) = 0.
Let g = sup,, g, Then g is Borel measurable, 0 < g < f and Agn(f # g) <

B(")?



Ay (U2, UM Ni(")) = 0. Finally, let f be any Lebesgue measurable function. Then
f = ft — f~ with f*, f~ non-negative Lebesgue measurable functions. By the
above, there exist hy, ho Borel measurable such that 0 < hy < f*,0< hy < f~, and
Ay (fT # hy) = Agn(f~ # ho) = 0. Then, h; — hy is a Borel measurable function
(note that hy — hy has never the value oo — oo since 0 < hy < fTand 0 < hy < f7),

and Agn (f # hi — ha) < Apn (fF # M) + A (f7 # ha) = 0.

. Let (E, B, 1) be a measure space, and f : E — [0, 00] a measurable simple function
such that fE fdp < oo. Show that for every € > 0 there exists a 6 > 0 such that if
A € B with pu(A) < é then [, fdu <e.

Proof: The proof is done by contradiction. Suppose there exists an € > 0 such that
for every d > 0 there exists a measurable set A such that p(A) < 6 but [, fdu > .
For A € B, let \(A) = [, f du. By problem 3 of Exercises 8, X is a finite measure on
B. By our assumption, for each n > 1 there exists a measurable subset A,, such that

1
u(Ay,) < o and AN(A,) = [, fdu>e Let A=limsup, . A, = o2 U, Am-
Since Y >, 1(A,) < oo, then by Borel-Cantelli Lemma (problem 3(c) in Exercises

7) we have p(A) = 0. But then A(A) = [, fdu = 0. Since A is a finite measure, by
problem 3(b) in Exercises 7, we have

0=A(A) = A(limsup A,,) > limsup A(4,) > ¢,

a contradiction. Therefore, for every € > 0 there exists a 6 > 0 such that if A € B
with u(A) <6 then [, fdu <e.

Note that in the proof we did not use the fact the f is a non-negative simple func-
tion, hence the proof holds for any non-negative measurable p-integrable function

on (E,B, ).



