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In the solutions, I do not give all possible approaches, but just one or two. Please write to
me if you find any typos or have other remarks.

Problem 1 (8 points). Determine all odd primes p such that
z2 =13 mod p

has a solution with x € Z.
More precisely: Find ann > 1 and a1, . ..,a, € Z such that 2> = 13 mod p has a solution if
and only if p = a; mod n for some 1 <i <r.

There is a solution (namely x = 0) if p = 13. We note that p = 13 iff p =0 mod 13.

Now assume that p # 13 is an odd prime. There is a solution of z2 = 13 mod p iff <%> = 1.

By quadratic reciprocity, we have (%) = (1%) as 13 =1 mod 4. Thus 22 = 13 mod p has a

solution iff p is a quadratic residue mod 13 (or p = 13).
The quadratic residues mod 13 are +1,+3 and +4 as a quick claculation shows. Thus, the p
we are searching for are those that are congruent to 0, +1, +3 or =4 modulo 13.

Problem 2 (10 points). Decide for the following three congruences whether there are solutions.
(Hint: You might want to determine first whether the numbers 101, 91 and 9991 are prime.)
(a) 2> =91 mod 101
(b) 22 =5 mod 91
(c) 2> =2 mod 9991
a) 101 is prime (not divisible by 2, 3, 5 and 7). We compute:
1 101
9Ly (101 100 (101 03) 10y
101 91 7 13 7 13

Here we use quadratic reciprocity for Jacobi symbols and that we have computed the quadratic
residues modulo 7 and 13 before. (For the last step, you could of course also use quadratic
reciprocity again.)

b) Note 91 = 7-13. If 22 =5 mod 91 has a solution, then 22 =5 mod 13 has a solution as
well. But 5 is not a quadratic residue modulo 13 as noted above. Thus, there is no solution.



c¢) We note 9991 = 10000 — 9 = 1002 — 32 = 97 - 103. The numbers 97 and 103 are primes.
Thus the Chinese Remainder Theorem implies that 2 = 2 mod 9991 has a solution if and only
if 22 =2 mod 97 and 2 = 2 mod 103 have solution. As 97 =1 mod 8 and 103 = —1 mod 8,
we know that 2 is a quadratic residue modulo 97 and 103. Thus, 2 = 2 mod 9991 also has a
solution. (Alternatively, one can use the formula for the Jacobi symbol (ﬁ).)

Problem 3 (12 points). Let p be an odd prime.
(a) Show that 1¥ +2F 4+ ... + (p —1)* = -1 mod p if (p — 1)|k.

(b) Let ged(k,p — 1) = 1. Show that for every a € Z, there is an x € Z with ¥ = a mod p
and that any two such x are congruent to each other modulo p.

(c) Show that 1¥ + 2% + ... (p —1)¥ =0 mod p if ged(p — 1,k) = 1.

a) Write k = (p — 1)I. By Fermat’s little theorem, we obtain a?~! = 1 mod p for every a
not divisible by p and thus a* = (ap_l)l =1/ =1 mod p. Thus,

1k+...(p_1)k51+...+1:(p—l)E—l mod p.

b) If a =0 mod p, the condition becomes zF =0 mod p, ie. p\xk. By Euclid’s lemma, this
is true if and only if x =0 mod p. Thus assume a not divisible by p.

High-brow solution: The problem is equivalent to the following statement: For each [a] €
(Z/p)*, there is a unique [x] € (Z/p)* such that [x]¥ = [a]. By the existence of a primitive root
we know (Z/p)* = Z/(p — 1) as abelian groups. Thus, the problem is equivalent to: For each
[b] € Z/(p—1) is there a unique [c] € Z/(p — 1) with [k][c] = [b]. This is true, as [k] is invertible
in Z/(p — 1) and thus the unique solution is [c] = [b][k]!.

Alternative lower-brow solution: Let b be a primitive root modulo p. Thus a = ™ mod p for
some integer p. Choose d, e € Z with dk + e(p — 1) = m (which is possible as ged(k,p—1) = 1).
Set 2 = b%. Then z* = b% = pm—e(P=1) Note that 5P~ =1 mod p as ¥~ =1 mod p by
Fermat’s theorem. Thus z¥ = 2F -1 = ™ = ¢ mod p. This shows existence. For uniqueness
suppose that x’f =a= x’§ mod p. Suppose z; = b% mod p and zo = b%® mod p. As b has
order (p — 1), we see that kdy = kda mod (p — 1). Because k is relative prime to (k — 1), it
follows that d; = d2 mod (p —1). As =1 =1 mod p, it follows that z1 = b4 = b% = x,.

c¢) For 1 <z <p—1, let a(z) be the remainder of z* if dividing by p. Part (b) implies that
{1,...,p—=1} = {1,...,p—1}, x +— a(z)
is a bijection. Thus,

1t (p—1)F

a(l)+---a(p—1) mod p
=14+ (p-1)
_plp—1)

2
p—1

2

This is clearly congruent to 0 modulo p.



