Example Answers to the

Elementary Number Theory Exam
held on 2-feb-2006

Question 1. (a) Determine all x € 7 that simultaneously satisfy

z = 2(mod mod 11),
7r = 4(mod mod 12),
xz = 4(mod mod 13).

(b) Show that the pair of congruence relations
x = a1 (mod mod my), x = az(mod mod my) (1)
has a solution iff gcd(my, mo) divides a1 — asg.

Answer. (a) By the Chinese Remainder theorem (CRT) there is a unique so-
lution modulo 11-12-13. The value will be deduced by repeated applications
of the CRT.

Multiplying the 2nd equation through by 7 (which is invertible mod
12), we see that the 2nd equation is equivalent to z = 4(mod 12). By the
CRT, there is a unique x modulo 12 - 13 that solves both x = 4(mod 12)
and x = 4(mod 13). It must be the obvious solution z = 4(mod 12 - 13).
Therefore we have reduced our task to solving

x = 2(mod mod 11),

x = 4(mod mod 12-13).
But z satisfies the second of these equations if we can write x = 12-13n+4
for some n € Z. Furthermore 12 - 13n + 4 = 2(mod 11) if and only of

n = —1(mod 11). Hence n = —1 + 11k and = = —152 + 11 - 12 - 13k. The
solution is given by the residue class —151(mod 11 -12-13).

(b) Let d := ged(my, ma). If 3 x so that (1) then clearly x = a;(mod d)
and z = az(mod d). Taking the difference we get 0 = a1 — az(mod d) and
so d divides a1 — as.

It remains to prove the converse.

To see this note that there are by, bs € Z so that

d = —bimq+ boma. (2)

hence if a1 — ag = Ad for some A € Z then

al —as = —Abymqy + Aboms.
Therefore
T = a1+ Abymi = as + Abams
is well defined and provides a solution to (1). O



Question 2. (a) Suppose = is an odd number. Show that every prime
divisor p of x% + 4 satisfies p =1 mod 4. Show also that at least one
of the prime divisors p satisfies p =5 mod 8.

(b) Deduce that there are an infinite number of primes of the form 5
mod 8.

Answer. (a) As x is odd any prime divisor p is odd. Also p|x?+4 implies that

(774) = (%) = —1. We deduce by [1], Corollary 11.1.5, that p = 1(mod 4).

If all the prime divisors were 1(mod mod 8), then 22 + 4 = 1(mod mod 8)
also, and so 22 = 5(mod mod 8). However odd integers squared are always
1(mod mod 8) (proof: expand (4m + 1)?). Therefore there must be a prime
divisor p with p = 5(mod mod 8).

(b) Suppose p1,...,pm lists all primes of the form 5(mod mod 8). Let
z:=[[I%; pi- By part (a), 22+4 has a prime divisor p with p = 5((mod mod 8)).J]
As p already occurs among the p; we get that p divides 4. This is im-
possible. Conclusion: there are an infinite number of primes of the form
5(mod mod 8). O

Question 3. Find all integers x,y, z with ged(x,y) =1 and

2 = zy(z+y). (3)
Answer. Note: There was a misprint in the exam, there it was asked that
ged(z,y,2) = 1.

We claim that there are coprime integers s, t of different parity so that
after possibly swapping x with y one of the following is true.

= ((s* =122, (2s1)%, +2st(s* — 11)),

= ((s* =1 — (s +17)%, +2st(s' —t1)),

= ((2st)%, — (2 + )2, +2st(s? —11)),

In the exam we would have been happy if one of the above parametrisa-
tions were found by the student. Now on with the solution.

We see that x, y cannot both be negative. Therefore, after swapping x, v,
solutions will all fall into one of the 3 cases discussed below. The combined
discussions prove the claim.

Case 1. z#£ 0,2 > 0,y > 0.

By the unique factorization of integers, there are non-zero integers a, b, ¢
so that x = a?,y = b%, 2 +y = . As ged(x,y) =1, a,b are coprime and
satisfy a® 4+ b2 = 2. Le. (a,b,c) are a Pythagorian Triple (see [1], Definition



31.1.1). Theorem 13.1.2 of [1] implies after possibly swapping = with y, that
there are coprime integers s, t of different parity so that

= (s> —1%)% y=(2st)% z=42st(s? —t1).

Case 2. z#£ 0,2 >0,y < 0.

Now there is a Pythagorian Triple (a, b, ¢) so that z = a2,y = —c?, z+y =
—b2. Arguing as in case 1, that there are coprime integers s,t of different
parity so that either

r=(s>—12)?% y=—(s2+1tH?2 z=42st(s? —t4).

or
x=(2st)%,y = —(s* +12)%, z = £2st(s* — t1).

Case 3. z =0.

If z = 0 we see that after possibly swapping x with y that (z,y, z) is one
of (0,£1,0), (1, —1,0).
]

Question 4. Assume that the abc-conjecture holds. Suppose A, B,p,q are
fized positive integers with p,q > 2 and pg > 4. Show that there are only a
finite number of positive integers x,y such that

AzP — By? = 2. (4)

Answer. For the definition of Rad(n) and a statement of the abc-conjecture
see [1][chapter 17]. Note: We would have been happy if you had done the
problem correctly under the assumption that ged(AxzP, By?,2) = 1. Here is
the complete solution.

Set a :=2/d,b:= By?/d,c := AxP/d, where d = gcd(2, By?, AzP). Now
a, b, c are a triple of coprime positive integers with a +b = c¢. We will apply
the abc-conjecture to this triple with an € > 0 that we will specify later. The
assumed conjecture implied that

¢ < (Rad(abe)) . (5)
with finitely many exceptions. From the definition of Rad,

Rad(abc) < Rad(d®abc)
Rad(2ABzPy?)
< 2ABuzy.

Furthermore equation (4) implies that y? < A/BaxP, so that certainly y <
Agz'a. Hence

Rad(abc) < 2AB" ). (6)



Combining (5) and (6) gives

-

1+€
AxP)d < <2ABxp(%+a>) .

Since p,q > 2 and pq > 4 we find that % +
that

g%—i—é:%. Also d < 2, so

We now know choose e = 1/10 to get

1 2 1.1
P < —(2AB)"
ri2 < A( )

< 8ABZ

Hence
r < 2P < (8AB*)'%

Therefore, there is an upper bound on the value of . Equation (4) now
implies a bound on y also. Hence there are only finitely many positive
integer z,y that satisfy (4). O

Question 5. (a) Show that w(n) < 5 + 2 for all positive integers, where
m(n) is the prime number function.

(b) Show that there is a sequence of positive integers ni,na,ng ... so that
o(ng)/nkp — 0 as k — oo.

(¢) Show that w(n)/n — 0 as n — oco.

Answer. For the definitions of m(n) and ¢(n) see [1], chapters 7 and 19.

(a) By inspection the inequality is true for n = 1,...,6. In every se-
quence of 6 consecutive integers at most 2 can be prime. This is because
if m = 0,2,3,4(mod mod 6) then m must be composite. Therefore, if the
inequality holds for n, it holds for n + 6. It now follows by induction that
the inequality holds for all positive integers.

(b) For this we define n; = Hf:o p; where p; denotes the i-th prime.
Showing that ¢(ng)/nx — 0 is equivalent to showing that ny/¢(ng) — oo.



Using the formula for ¢(n) given in [1], Theorem 7.1.1, we get
k

sy = 11 (1 - ;,)_1

1=0

_ 3 %

m>0, divisible only by p1,...,pk
k
1
> D
m
m=1

> log(k+1).

The estimates can be found in [1], Section 19.1. We conclude that ny/¢(ng) —f
oo as claimed.

(c) Choose ny, as in part (b). Arguing as in part (a) we find that 7(an +
b) < b+ ap(ng) for all a > 0 and 0 < b < ng. Hence

m(ang +b) - b ap(ng) < min(1,b/a) + ¢(nk)
ang + b ang+b  angp+0b g

Since can write any n € N in the form n = ang+b with b < ni. We conclude

that
lim sup @ < qb(nk)
n n n
From (b) we know that ¢(nj)/ni, can be arbitrarily small by choosing k
large enough. Hence lim sup,, @ = 0, as required. O
References

[1] Frits Beukers, Getaltheorie voor Beginners Epsilson-uitgaven Utrecht.



