
Example Answers to the
Elementary Number Theory Exam

held on 2-feb-2006

Question 1. (a) Determine all x ∈ Z that simultaneously satisfy

x ≡ 2(mod mod 11),
7x ≡ 4(mod mod 12),
x ≡ 4(mod mod 13).

(b) Show that the pair of congruence relations

x ≡ a1(mod mod m1), x ≡ a2(mod mod m2) (1)

has a solution iff gcd(m1,m2) divides a1 − a2.

Answer. (a) By the Chinese Remainder theorem (CRT) there is a unique so-
lution modulo 11·12·13. The value will be deduced by repeated applications
of the CRT.

Multiplying the 2nd equation through by 7 (which is invertible mod
12), we see that the 2nd equation is equivalent to x ≡ 4(mod 12). By the
CRT, there is a unique x modulo 12 · 13 that solves both x ≡ 4(mod 12)
and x ≡ 4(mod 13). It must be the obvious solution x ≡ 4(mod 12 · 13).
Therefore we have reduced our task to solving

x ≡ 2(mod mod 11),
x ≡ 4(mod mod 12 · 13).

But x satisfies the second of these equations if we can write x = 12 · 13n +4
for some n ∈ Z. Furthermore 12 · 13n + 4 ≡ 2(mod 11) if and only of
n ≡ −1(mod 11). Hence n = −1 + 11k and x = −152 + 11 · 12 · 13k. The
solution is given by the residue class −151(mod 11 · 12 · 13).

(b) Let d := gcd(m1,m2). If ∃ x so that (1) then clearly x ≡ a1(mod d)
and x ≡ a2(mod d). Taking the difference we get 0 ≡ a1 − a2(mod d) and
so d divides a1 − a2.

It remains to prove the converse.
To see this note that there are b1, b2 ∈ Z so that

d = −b1m1 + b2m2. (2)

hence if a1 − a2 = λd for some λ ∈ Z then

a1 − a2 = −λb1m1 + λb2m2.

Therefore

x := a1 + λb1m1 = a2 + λb2m2

is well defined and provides a solution to (1).
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Question 2. (a) Suppose x is an odd number. Show that every prime
divisor p of x2 + 4 satisfies p ≡ 1 mod 4. Show also that at least one
of the prime divisors p satisfies p ≡ 5 mod 8.

(b) Deduce that there are an infinite number of primes of the form 5
mod 8.

Answer. (a) As x is odd any prime divisor p is odd. Also p|x2+4 implies that(
−4
p

)
=

(
−1
p

)
= −1. We deduce by [1], Corollary 11.1.5, that p ≡ 1(mod 4).

If all the prime divisors were 1(mod mod 8), then x2 + 4 ≡ 1(mod mod 8)
also, and so x2 ≡ 5(mod mod 8). However odd integers squared are always
1(mod mod 8) (proof: expand (4m± 1)2). Therefore there must be a prime
divisor p with p ≡ 5(mod mod 8).

(b) Suppose p1, . . . , pm lists all primes of the form 5(mod mod 8). Let
x :=

∏m
i=1 pi. By part (a), x2+4 has a prime divisor p with p ≡ 5((mod mod 8)).

As p already occurs among the pi we get that p divides 4. This is im-
possible. Conclusion: there are an infinite number of primes of the form
5(mod mod 8).

Question 3. Find all integers x, y, z with gcd(x, y) = 1 and

z2 = xy(x + y). (3)

Answer. Note: There was a misprint in the exam, there it was asked that
gcd(x, y, z) = 1.

We claim that there are coprime integers s, t of different parity so that
after possibly swapping x with y one of the following is true.

• (x, y, z) =
(
(s2 − t2)2, (2st)2, ± 2st(s4 − t4)

)
,

• (x, y, z) =
(
(s2 − t2)2, − (s2 + t2)2, ± 2st(s4 − t4)

)
,

• (x, y, z) =
(
(2st)2, − (s2 + y2)2, ± 2st(s4 − t4)

)
,

• (x, y, z) is one of (0,±1, 0), (1,−1, 0).

In the exam we would have been happy if one of the above parametrisa-
tions were found by the student. Now on with the solution.

We see that x, y cannot both be negative. Therefore, after swapping x, y,
solutions will all fall into one of the 3 cases discussed below. The combined
discussions prove the claim.

Case 1. z 6= 0, x > 0, y > 0.
By the unique factorization of integers, there are non-zero integers a, b, c

so that x = a2, y = b2, x + y = c2. As gcd(x, y) = 1, a, b are coprime and
satisfy a2 + b2 = c2. I.e. (a, b, c) are a Pythagorian Triple (see [1], Definition
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31.1.1). Theorem 13.1.2 of [1] implies after possibly swapping x with y, that
there are coprime integers s, t of different parity so that

x = (s2 − t2)2, y = (2st)2, z = ±2st(s4 − t4).

Case 2. z 6= 0, x > 0, y < 0.
Now there is a Pythagorian Triple (a, b, c) so that x = a2, y = −c2, x+y =

−b2. Arguing as in case 1, that there are coprime integers s, t of different
parity so that either

x = (s2 − t2)2, y = −(s2 + t2)2, z = ±2st(s4 − t4).

or
x = (2st)2, y = −(s2 + t2)2, z = ±2st(s4 − t4).

Case 3. z = 0.
If z = 0 we see that after possibly swapping x with y that (x, y, z) is one

of (0,±1, 0), (1,−1, 0).

Question 4. Assume that the abc-conjecture holds. Suppose A,B, p, q are
fixed positive integers with p, q ≥ 2 and pq > 4. Show that there are only a
finite number of positive integers x, y such that

Axp −Byq = 2. (4)

Answer. For the definition of Rad(n) and a statement of the abc-conjecture
see [1][chapter 17]. Note: We would have been happy if you had done the
problem correctly under the assumption that gcd(Axp, Byq, 2) = 1. Here is
the complete solution.

Set a := 2/d, b := Byq/d, c := Axp/d, where d = gcd(2, Byq, Axp). Now
a, b, c are a triple of coprime positive integers with a + b = c. We will apply
the abc-conjecture to this triple with an ε > 0 that we will specify later. The
assumed conjecture implied that

c ≤ (Rad(abc))1+ε . (5)

with finitely many exceptions. From the definition of Rad,

Rad(abc) ≤ Rad(d3abc)
= Rad(2ABxpyq)
≤ 2ABxy.

Furthermore equation (4) implies that yq ≤ A/Bxp, so that certainly y ≤
Ax

p
q . Hence

Rad(abc) ≤ 2ABx
p( 1

p
+ 1

q
)
. (6)
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Combining (5) and (6) gives

Axp/d ≤
(
2ABx

p( 1
p
+ 1

q
)
)1+ε

.

Since p, q ≥ 2 and pq > 4 we find that 1
p + 1

q ≤ 1
2 + 1

3 = 5
6 . Also d ≤ 2, so

that

xp ≤ 2
A

(
2ABx

5
6
p
)1+ε

.

We now know choose ε = 1/10 to get

x
1
12

p ≤ 2
A

(2AB)1.1

≤ 8AB2.

Hence

x ≤ xp ≤ (8AB2)12.

Therefore, there is an upper bound on the value of x. Equation (4) now
implies a bound on y also. Hence there are only finitely many positive
integer x, y that satisfy (4).

Question 5. (a) Show that π(n) < n
3 + 2 for all positive integers, where

π(n) is the prime number function.

(b) Show that there is a sequence of positive integers n1, n2, n3 . . . so that
φ(nk)/nk → 0 as k →∞.

(c) Show that π(n)/n → 0 as n →∞.

Answer. For the definitions of π(n) and φ(n) see [1], chapters 7 and 19.

(a) By inspection the inequality is true for n = 1, . . . , 6. In every se-
quence of 6 consecutive integers at most 2 can be prime. This is because
if m ≡ 0, 2, 3, 4(mod mod 6) then m must be composite. Therefore, if the
inequality holds for n, it holds for n + 6. It now follows by induction that
the inequality holds for all positive integers.

(b) For this we define nk =
∏k

i=0 pi where pi denotes the i-th prime.
Showing that φ(nk)/nk → 0 is equivalent to showing that nk/φ(nk) → ∞.
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Using the formula for φ(n) given in [1], Theorem 7.1.1, we get

nk

φ(nk)
=

k∏

i=0

(
1− 1

pi

)−1

=
∑

m>0, divisible only by p1,...,pk

1
m

>
k∑

m=1

1
m

> log(k + 1).

The estimates can be found in [1], Section 19.1. We conclude that nk/φ(nk) →
∞ as claimed.

(c) Choose nk as in part (b). Arguing as in part (a) we find that π(ank +
b) < b + aφ(nk) for all a ≥ 0 and 0 ≤ b < nk. Hence

π(ank + b)
ank + b

<
b

ank + b
+

aφ(nk)
ank + b

< min(1, b/a) +
φ(nk)

nk
.

Since can write any n ∈ N in the form n = ank +b with b < nk. We conclude
that

lim sup
n

π(n)
n

≤ φ(nk)
nk

.

From (b) we know that φ(nk)/nk can be arbitrarily small by choosing k

large enough. Hence lim supn
π(n)

n = 0, as required.
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