Exam Representations of Finite Groups, WISB324 June 25, 2019, 17:00-20:00

- Write your name on every sheet.
- The book may be consulted.
- In each item you can use the results from previous items, even if you have not solved them.
- Motivate your solutions!
- Success!
- 1. Let G be the finite group given by

$$G = \left\langle a, b, c | a^3 = b^3 = c^3 = e, ab = ba, ac = ca, c^{-1}bc = ab \right\rangle$$

It has 27 elements and 11 conjugation classes. In the following we compute the irreducible characters of G without computing the conjugation classes.

- (a) (1/2 pt) Determine the dimensions of the irreducible representations of G.
- (b) (1 pt) Determine the one-dimensional representations of G.
- (c) (1/2 pt) Show that $\{e\}, \{a\}, \{a^2\}$ are conjugation classes of G.
- (d) (1/2 pt) Show that $\chi(g) = 0$ for every $g \notin \{e, a, a^2\}$ and every irreducible character χ with $\chi(e) > 1$.
- (e) (1/2 pt) Show that $\chi(a^2) = \overline{\chi(a)}$ for every character χ .
- (f) (1/2 pt) Show that there is an irreducible character such that $\chi(a) \notin \mathbb{R}$. Define $\alpha = \chi(a)$ for this character.
- (g) (1 pt) Determine the possible values of α .
- 2. Consider the vector space of bilinear polynomials in $x_1, x_2, x_3, y_1, y_2, y_3$ given by

$$V = \left\{ \sum_{i,j=1}^{3} \lambda_{ij} x_i y_j \, \middle| \, \lambda_{ij} \in \mathbb{C} \right\}.$$

We give V a $\mathbb{C}S_3$ -module structure by letting every $\sigma \in S_3$ action as σ : $x_i y_j \mapsto x_{\sigma(i)} y_{\sigma(j)}$.

- (a) (1/2 pt) Write down the character table of S_3 . Briefly motivate your answer.
- (b) (1 pt) Determine the character of the $\mathbb{C}S_3$ -module V and write it as sum of irreducible characters of S_3 .

PTO (ZOZ)

- (c) (1 pt) Write down generators of the subspaces of V that correspond to one-dimensional $\mathbb{C}S_3$ submodules of V.
- (d) (1/2 pt) Show that the $\mathbb{C}S_3$ -module V is isomorphic to $W \otimes W$, where W is the $\mathbb{C}S_3$ -module given by the permutation representation $\sigma : \mathbf{e}_i \mapsto \mathbf{e}_{\sigma(i)}$ for all $\sigma \in S_3$ and i = 1, 2, 3.
- 3. Let χ be a character of a finite group G.
 - (a) (1 pt) Show that if $\chi(g) = 0$ for all $g \neq e$, then χ is a multiple of χ_{reg} , the character of the regular $\mathbb{C}G$ -module.
 - (b) (1 pt) Suppose that $\chi(g) \in \mathbb{R}_{\geq 0}$ for all $g \in G$. Show that χ is either the trivial character, or reducible.
- 4. (1 bonus point) The regular representation of a finite group G consists of the vector space $\mathbb{C}G$ together with an action of G given by $\rho_1(g): r \mapsto gr$ for all $g \in G, r \in \mathbb{C}G$. Denote this $\mathbb{C}G$ -module by V_1 . We define a second action of G by $\rho_2(g): r \mapsto rg^{-1}$ for all $g \in G, r \in \mathbb{C}G$.
 - (a) (1/2) Show that $\mathbb{C}G$ with the action ρ_2 is a $\mathbb{C}G$ -module. Denote it by V_2 .
 - (b) (1/2) Show that V_1 and V_2 are isomorphic $\mathbb{C}G$ -modules by exhibiting a $\mathbb{C}G$ -isomorphism between them.