Exam Representations of Finite Groups, WISB324

With Solutions
June 25, 2019, 17:00-20:00

1. Let G be the finite group given by

G = <a, b,cla® =b* = = e, ab = ba,ac = ca,c 'bc = ab> .

It has 27 elements and 11 conjugation classes. In the following we compute
the irreducible characters of G without computing the conjugation classes.

(a)

(d)

(1/2 pt) Determine the dimensions of the irreducible representations of

G.

Solution Suppose there are A three-dimensional, B two-dimensional and
C one-dimensional representations. Then, 9A+4B + C' = 27, the order
of G and A+ B+ C' = 11, the number of conjugation classes. Subtract
the two to get 8A + 3B = 16. So B is divisible by 8 which is only
possible if B=0. Hence A=2and C =11—-A— B =09.

(1 pt) Determine the one-dimensional representations of G.

Solution This can be done independently of (a). Suppose we have a
one-dimensional reprentation p and put p(a) = «, p(b) = B, p(c) = .
From the defining relations of G it follows that o® = 33 = 43 = 1
and v 18y = aff, hence @ = 1. Let w = >/, then we see that
B = wh v = W for some k,I = 0,1,2. These are nine possibilities,
corresponding to C' =9 we had in (a).

(1/2 pt) Show that {e}, {a}, {a*} are conjugation classes of G.

Solution From the defining relations it follows that a commutes both
with b and ¢. Hence a is in the center of G and so {a*} is a conjugation
class for k = 0,1, 2.

(1/2 pt) Show that x(g) = 0 for every g & {e,a,a?} and every irre-
ducible character y with x(e) > 1.

Solution Choose a one-dimensional character p such that p(g) = w.
Then p times x and p? times Y are also irreducible characters. If
x(g) # 0, the three characters x, xp, xp* would be inequivalent since
their values at g would be distinct. This contradicts the fact that we
have only two three-dimensional representations. Hence x(g) = 0.

(1/2 pt) Show that y(a?) = x(a) for every character Y.
Solution Notice that a> = a™!. From the theory we know that y(a™!) =
x(a).




(f)

(1/2 pt) Show that there is an irreducible character such that y(a) € R.
Define o = x(a) for this character.

Solution Suppose that y(a) € R for all x. Then x(a*) = x(a) for all
X. Since {a}, {a*} are distinct conjugation classes we have the column
orthogonality relation 0 = 37 x(a)x(a®) = 3° x(a)* > 0, which is a
contradiction.

(1 pt) Determine the possible values of a.

Solution Choose the character x from part (f). Then Y given by Y(g) =
X)(g) is also character and necessarily the character of the second three-
dimensional representation. We have the absolute value of the column
corresponding to {a}: 27 = 9 x 1% + |a|? + |@|?, hence 18 = 2|a|?. So
|a| = 3. The inner product relation of the columns corresponding to {e}
and {a} reads 0 = 9+ 3a + 3@ Hence a+ @ = —3. So real part of a =
—3/2. Imaginary part is then /32 — (—3/2)2 = 1/27/4 = £3V/3/2.

2. Consider the vector space of bilinear polynomials in x1, xo, 23, Y1, Y2, Y3 given

by

3
V = { Z )\Z-ja:iyj

1,j=1

)\ij GC}

We give V' a CS3-module structure by letting every o € S3 action as o :
Tillj 7 o (i)Yo (i)

(a)

()

(1/2 pt) Write down the character table of S5. Briefly motivate your
answer.

Solution

Xtriv 1 1 1
Xsign 1 -1 1
Ya 2 0 -1

(1 pt) Determine the character of the CSs-module V' and write it as
sum of irreducible characters of Ss.

Solution The group S3 permutes the nine products z;y;. The character
value of o € S5 is simply the number of monomials that are fixed under
o. Hence xv((1)) = 9, xv((12)) = 1,xv((123)) = 0. By linear algebra
it follows that xv = 2Xtriv + Xsign + 3XA-

(1 pt) Write down generators of the subspaces of V' that correspond to
one-dimensional CS3 submodules of V.

Solution It is clear that the sum of all monomials z;y; is fixed under
every o, as well as the sum x1y; + x2ys + x3y3. This is a basis of the



space with trivial action. For xggn simply try z1y, — x2y1 and add its
images under (123), (123)2. That is

T1Y2 — ToY1 + T2Ys — T3Y2 + T3Y1 — T1Y3.

This turns out to be an eigenvector with eigenvalue —1 for o = (12).

(d) (1/2 pt) Show that the CS3-module V' is isomorphic to W @ W, where
W is the CS3-module given by the permutation representation o : e; —
e,(;) forall o € S3and © = 1,2, 3.

Solution The trace values of the permutation representation are yy =
3, xw((12)) = 1, xw((123)) = 0. Notice that v (o) = xw(o)? for all 0.
Hence V' is isomorphic to W @ W.

3. Let x be a character of a finite group G.

(a) (1 pt) Show that if x(g) = 0 for all g # e, then x is a multiple of Xyeq,
the character of the regular CG-module.
Solution We have xyeg(€) = |G| and Xyeg(g) = 0 for all g # e. Hence
X = (x(€)/|G])Xreg- If x(€)/|G] is an integer we are done since represen-
tations are uniquely determined by their characters and so our represen-
tation would be the sum of x(e)/|G| copies of the regular represenation.
Notice also that the (integer) number of trivial representations in x is
given by the inner product ‘—g;' >gec X(9) = x(e)/|G].

(b) (1 pt) Suppose that x(g) € R for all g € G. Show that x is either the
trivial character, or reducible.
Solution The number of copies of the trivial character in the decomposi-
tion of x is equals to the inner product ﬁ > geC X(g), which is positive
because x(g) > 0 and x(e) > 0. Hence x contains at least one copy
of the trivial character. If y(e) = 1 then it equals the trivial charac-
ter, if x(e) > 1 it is reducible because it contains a copy of the trivial
character.

4. (1 bonus point) The regular representation of a finite group G consists of the
vector space CG together with an action of G given by pi(g) : r — gr for all
g € G,r € CG. Denote this CG-module by Vi. We define a second action of
G by pa(g) :r = rg~! for all g € G,r € CG.

(a) (1/2) Show that CG with the action py is a CG-module. Denote it by
Va.

Solution 1t is clear that ps(g) is a linear map. It remains to show that
p2(gh) = p2(g)p2(h). Notice that

p2(9)(p2(h)r) = p2(g)(rh™") = rh™'g~" = r(gh)~" = p2(gh)(r).



(b) (1/2) Show that V; and V; are isomorphic CG-modules by exhibiting a
CG-isomorphism between them.

Solution The isomorphism is given by ¢ : >° Ag9 = > ¢ Agg~ ! No-
tice that for every h € G,

¢ (mh) (Z Agg>> = ¢ (Z Aghg> = Z Ag(hg)™!

() )

So ¢ o p1(g) = pa(g) © 9.



